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is drawn from an estimated, micro-founded portfolio-choice model where id-

iosyncratic return risk and disagreement in expectations on asset returns

generate an analytically tractable fat-tailed Pareto distribution for the top-
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taxation. The model generates good out-of-sample forecasts and is used to
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1 Introduction

One of the oldest economic debates concerns the fundamental question

of what drives economic inequality. While the topic lay dormant for a long

time, it has recently been put back at the forefront of the academic debate

by several researchers. They document that after a period of contraction,

the concentration of economic resources again increased tremendously in the

1980s (Piketty, 2014; Saez and Zucman, 2016; Lundberg and Waldenström,

2017). This is not only true for individual income but especially for the

stock measure of wealth, with levels of dispersion largely surpassing the levels

of income inequality. Some economists, including Thomas Piketty, see an

inherent higher order at play, suggesting that a trend of increasing wealth

concentration is an inbuilt property of market economies. The answer we

derive in this paper is far more mundane. While in a laissez-faire economy

wealth inequality would indeed explode, the degree of wealth concentration

in modern economies is shaped by the structure of the tax system. As such,

economic policy is empowered to directly shape the distribution of wealth.

The key contribution of this paper is to show that a simple model is,

when fed with the series of taxes, able to account for a long-run perspective

and to reproduce 90 years of US-evidence on wealth concentration. This sub-

stantially extends the analysis as compared to other recent papers trying to

match the US evidence, which start from the 1970s (or later) and thus solely

focus on a sample that features monotonously increasing inequality (Hubmer

et al., 2016; Aoki and Nirei, 2017; Cao and Luo, 2017). Our result has three

strong implications. First, the distribution of wealth is mainly shaped by the

policy maker deciding on the level of taxation with high taxes implying low
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inequality. Second, the data suggests that this effect is persistent despite the

risk of tax evasion and avoidance. Finally, there is a structural component

driving wealth concentration which displays little time variation. In fact,

increases in wealth inequality can be linked to increased opinion dispersion

in financial markets both in the data and in the model.

The source of inequality in our micro-founded portfolio-choice model is

idiosyncratic return risk in combination with disagreement in expectations

on asset returns. The exogenous variable driving the evolution of top wealth

inequality dynamics – as suggested by Piketty (2014) – is the taxation of

capital gains. This tax has higher explanatory power for top inequality than

other taxes levied on individuals. Since we identify equity trading and returns

as central features to explain the behavior of top wealth dynamics, we do

not include characteristics which are of importance for the left tail of the

distribution (the poor).1 In particular for the rich the main source of income

is not labor income, but capital income. It follows that the concentration of

wealth shapes the concentration of top income and not vice versa.

To our best knowledge, this analysis is the first that can successfully cover

such a long time horizon of 90 years. We capture the sharp increase until the

Great Depression, the following drop, and the leveling of inequality after the

Second World War. Finally, we capture the substantial increase in inequality

after the 1980s. Our analysis simultaneously takes into account episodes of

falling and rising inequality. The fact that transition speed for increasing and

1A non-exhaustive list features entry barriers into financial markets in favor of the
wealthy, decreasing relative risk aversion, different marginal propensities to consume, and
inter-generational wealth transmission.
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decreasing episodes as well as levels of stagnant and transitory inequality are

matched while relying on a highly parsimonious model further strengthens

our argument.

Formally, we employ a model of the random-growth class which can ex-

hibit Pareto tails for the stationary distribution under fairly general condi-

tions (cf. Benhabib et al., 2011). A central feature of this type of model is

its ability to cast the law of motion in closed form. This type of model usu-

ally comprises transition dynamics that are too slow to match the empirical

evidence (Gabaix et al., 2016). The previous literature in this field empha-

sizes the effect of multiplicative idiosyncratic capital income risk as a driver

of inequality, as opposed to labor income risk, which is additive. We fur-

ther supplement our model with heterogeneity about future asset prospects

as a novel mechanism that boosts inequality. As we argue in the following

section, expectations disagreement is well documented in surveys and behav-

ioral experiments and hence constitutes a natural candidate driving trading

dynamics. This feature enables us to overcome the problem of slow conver-

gence dynamics and enables us to fit the dynamics without having to rely on

ad-hoc features such as superstar shocks.

Equipped with a closed form solution, we are able to distinguish periods of

steady state stability in the distribution from transition phases, while other

papers simply impose the assumption of a steady state at some arbitrary

start date. As our model reveals, the wealth distribution was at a steady

state only in the 1950s and the early 1960s, while at any other time (slowly)

transitioning to either higher or lower levels of concentration. Additionally

to the mapping from taxation to levels of concentration we analyse the effects
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of changes in uncertainty and fluctuations in financial variables. In the pres-

ence of risk-free assets higher idiosyncratic wealth risk – established in the

literature as a mechanism creating fat tailed wealth distributions – actually

lowers wealth concentration since it is internalized in agents’ portfolio deci-

sions by lowering their exposure to risky assets. In terms of dynamics, both

higher taxes and a larger disagreement increase the convergence speed. From

a policy perspective, this implies that the reduction of inequality after a tax

hike is faster than the increase following a tax cut of the same magnitude.

We further report explosive wealth inequality in the absence of redistributive

taxation while higher taxation lowers the degree of steady state inequality. A

further advantage of the closed-form solution is that estimation of our model

is straightforward. This stands in contrast to much of the existing literature,

which uses standard parameter values from the literature for their calibration

and relies on eyeball goodness-of-fit tests.

In line with the novel predictions of the model, periods of substantial dis-

agreement in the asset market – such as the Great Depression or the Dot-com

boom – are also characterized by rapidly increasing wealth inequality. This

also suggests that financial instability and wealth inequality do emerge as

twins (Kumhof et al., 2015). Given the accuracy of the estimated model in

terms of out-of-sample forecasts, we also make forecasts for alternative tax

regimes. Remaining at the level of taxation initiated by the government un-

der President Obama would in fact considerably decrease the degree of wealth

concentration, whereas tax cuts back to the pre-Obama level would further

increase wealth inequality in the USA. In the latter case, concentration has

not yet converged to its new steady state.
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The remainder of this work is structured as follows. In Section 2 we

provide an overview of the empirical and theoretical literature on wealth

inequality with a focus on recent papers that attempt to fit the empirical ev-

idence. In the following section we present the micro-foundations for our for-

mal model and discuss analytically statistical properties in Section 4. Section

5 uses the model to generate forecasts about the future evolution of wealth

inequality and presents robustness checks. Finally, Section 6 concludes the

paper.

2 Literature

Following the publication of the work of Piketty (2014), the empirical

evidence on economic inequality has substantially improved. Cross-country

evidence is assembled and made freely available on the World Income &

Wealth Database maintained by the collaborative effort of many researchers.

Despite this effort, much of the focus still lies on the income distribution

as opposed to the distribution of wealth and the availability of consistent

and long-run measures of wealth inequality is still limited. The database

provides long-run data for the United States of America, France and the

United Kingdom. The US data – important for our paper – was recently

updated by Saez and Zucman (2016).2 A recent comprehensive survey on

the overall empirical evidence regarding wealth inequality is given in Roine

and Waldenström (2015).

2The data is available at wid.world. For the UK and France, the latest data update
was conducted by Alvaredo et al. (2018) and Garbinti et al. (2017). Evidence for Sweden
is compiled by Lundberg and Waldenström (2017) and is freely available on the authors
homepage.
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Figure 1: Top wealth shares for the USA and selected European countries

Notes: Wealth inequality decreased until the 1980s. While it leveled in Europe, it increased
in the USA afterwards. Left panel includes the UK, France and Sweden, right panel
only France and Sweden. Missing values are interpolated. Data source: wid.world and
Lundberg and Waldenström (2017) for Sweden.

Figure 1 presents collected evidence on the top-shares for the USA and

the European Countries – France, Sweden and the UK – in the long run.

It is important to point out the deviation of the US economy from the (av-

erage) European behavior exhibiting a L-shaped pattern. The dynamics of

inequality in the USA are more pronounced featuring both periods of sub-

stantial decreases in inequality as well as increases. One peak in inequality

is measured at the height of the Great Depression; a period in which Euro-

pean countries exhibited a trend of declining inequality. The 1980s represent

another turning point in the history with a substantial increase in top in-

equality. In comparison this increase is modest in the European countries,

but highly pronounced in the USA and in particular emerges for the top

wealth holders.

Different theoretical models compete in order to explain the observed

degree of inequality. Usually, models in the Bewley-type tradition are con-
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sidered in order to discuss inequality (Bewley, 1986; Huggett, 1993; Aiyagari,

1994). Yet, it has been formally shown by Benhabib et al. (2011) that these

types of models – built around the notion of additive idiosyncratic labor in-

come risk – will fail to generate the fat tails in the wealth distribution and

thus match the shares of the top wealth holders. Benhabib et al. (2011) pro-

pose a model with multiplicative idiosyncratic capital income risk in order

to replicate the current state of wealth inequality in the USA. They follow

a rationale laid out as early as Wold and Whittle (1957), building on ran-

dom growth (hence the term random growth models). A tax that addresses

these multiplicative shocks on capital returns – i.e. the capital gain tax –

is also crucial to understand top dynamics. In fact, the absence of taxation

in a standard model with idiosyncratic investment risk implies that wealth

inequality does explode (Fernholz and Fernholz, 2014).

Castaneda et al. (2003) propose extreme so-called superstar income states

to rationalize the measured extreme top shares in a Bewley type economy.

Yet, as documented in Saez and Zucman (2016), the saving rate increases

for the top wealth holders. Accordingly, the prime share of their income

originates from saved wealth rather than labor income (also cf. Piketty,

2014).3 Hence, at the top tails the impact of labor income substantially

reduces. In contrast the distribution of total income and the stock measure

of wealth at the top are shaped by the financial decision making process.

Hence, in our model we put the emphasis on the portfolio structuring and

asset trading.

3The reader is especially referred to figures 8.4 and 8.10 in Piketty (2014) for French
and US evidence.
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While heterogeneous portfolios are often motivated by different degrees

of risk aversion and marginal propensities to consume, this argument does

not hold for the very rich since they should have a relatively similar portfo-

lio structure. But even if the portfolio structure would be identical, given

the large supply of similar assets within classes this would not imply all

portfolios contain the same assets. However, due to heterogeneous individ-

ual expectations about future prospects, agents still hold different positions

among asset classes. Greenwood and Shleifer (2014) document a consider-

able degree of disagreement on future returns in a survey over six data sets

on investor expectations of future stock market returns. Further, Pfajfar and

Santoro (2008, 2010) provide empirical evidence in support of heterogeneous

expectations using survey data on inflation expectations. Additional evi-

dence from the lab has shown that individuals generally do not perform well

when forming expectations and these expectations are furthermore largely

heterogeneous, which is summarized in e.g. Hommes (2013). Boehl (2018)

shows that expectations will be heterogeneous even if a considerable fraction

of traders is super-rational. Recently the heterogeneous expectations hypoth-

esis has made its way into macroeconomics (Mankiw et al., 2004; Branch,

2004). For that reason we explicitly motivate heterogeneous portfolios by

marginal disagreement on future returns.

Given the new data evidence, similar projects have been undertaken.

Most prominently, Kaymak and Poschke (2016) use the evidence for the

United States from 1960 to the most present date to present a calibrated

model in the Bewley tradition. As these models in general fail in matching

the top tails of the wealth distribution (Aiyagari, 1994), they require for a
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modification. Using the modification of Castaneda et al. (2003) and allowing

for superstar shocks to reproduce high levels of income inequality, Kaymak

and Poschke (2016) are able to match the data relatively well. Aiming to

identify the contributing factors with a very detailed modeling of the US-tax

system (including income, corporate, and estate taxes as well as the pension

system), the authors argue that the structure of the taxation and transfer

system is key to explaining the evolution of wealth inequality. Hubmer et al.

(2016) extend an otherwise standard Bewley-type model with heterogeneous

rates of time preference (Krusell and Smith, 1998), Pareto tails in the income

distribution and idiosyncratic investment risk (Benhabib et al., 2011). They

reproduce wealth inequality dynamics as a result of substantial tax changes,

with a data scope starting from the 1970s. While concentration has started

to increase in this period, this omits the relatively stable period of the 1960s

and the period of decreasing wealth concentration in the 1970s.They conclude

that the substantial increase in income inequality, the change in labor share,

the gap between the interest rate and the growth rate r > g (Piketty, 2014)

all fall short of explaining these dynamics.4

A different approach is presented in Aoki and Nirei (2017), featuring

a rich model in continuous time. In line with empirical evidence and due

to idiosyncratic firm shocks the emerging stationary distribution of firms is

given by Zipf’s law.5 The firm’s returns translate into income for private

households, implying a realistic distribution of both income and wealth for

4Piketty argues that wealth inequality will not converge as long as the rate of interest
r is larger than the growth rate of labor income g. For a detailed formal and critical
discussion see Fischer (2017).

5The latter is a Power-law with an exponent α = 1.

10



private households. Combining this framework with a set of tax rates they

are able to match both the dynamics and the state of inequality in the USA.

Again, the authors focus on the data from the 1970s to the most recent years.

Cao and Luo (2017) introduce idiosyncratic return risk into an otherwise

standard neoclassical growth model to account for US wealth inequality and

also show that the latter is accompanied by increasing capital-output-ratios

and decreasing labor shares. In contrast to their work, our paper focuses on

the distributional impact of taxation and does not make a statement about

the macroeconomic impact of the wealth tax or even its optimal level.6

It is interesting to point out that the rich models discussed so far require

some specific modeling assumptions in order to match top inequality such

as extreme superstar earnings or preference heterogeneity in discount rates.

These measures map back primarily to the labor earnings process or impose

ex-ante heterogeneity. In contrast, our tractable model pinpoints to the role

of the financial decision process rather than labor income (negligible for the

top shares) in order to understand top wealth inequality. In particular, we

abstain from any form of ex-ante inequality that is sometimes brought as an

explanation of the witnessed inequality basically imposing it exogenously.

Moreover, our model extends the literature by enlarging the time per-

spective of the analysis substantially and also covering periods of decreasing

inequality and the Great Depression. In the following, we present the struc-

ture of our model.

6Judd (1985) shows that in standard models the optimal tax on the stock value of
wealth is zero. In Bewley-type models this result fails to hold and optimal taxes need to
be positive in order to counteract excessive savings (Aiyagari, 1995). Also see Castaneda
et al. (2003), Domeij and Heathcote (2004), and Cagetti and DeNardi (2009).
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3 Model

We assume an economy with a very large number of individuals indexed

by i and that time is discrete.7 Their only income consists of investment

returns and they are free to choose between a risk-free asset paying a con-

stant gross return of R and a continuum of ex-ante identical risky assets

of which each pays an idiosyncratic, stochastic dividend di,t every period t.

To maximize their intertemporal consumption over an infinite time horizon

the agents accumulate wealth wi,t. Hence, each agent i faces the question of

which amount ci,t to consume and which amount xi,t = zi,twi,t of the risky

asset to purchase. In this case zi,t relates the demand for risky assets as a

share of individual wealth wi,t. As pointed out earlier, such a model provides

a realistic representation for the behavior of wealthy agents, but – in the ab-

sence of features such as borrowing constraints and labor income – naturally

falls short in the context of the lower 50% share of wealth holders. Since we

aim to explain the dynamics of top-shares such simplification is justifiable

because, trivially, the wealth share of the bottom (1 − x)% can be seen as

the residual wealth not owned by the top x%.

Assuming log-preferences, the individual problem is then given by

max
c,z

Et

∞∑
t=0

βtt ln ci,t

7This assumption is in line with the standard literature and simplifies derivation of the
model. In order to find the cross-sectional distribution (cf. Section 4) we have to transfer to
a continuous time approach. Given the discrete nature of data, in our empirical application
(Section 5) we afterwards return to a discrete time setting.
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subject to the two constraints

wi,t = (R + [di,t + pt −Rpt−1]zi,t−1) si,t−1(1− τ)wi,t−1, (1)

ci,t =(1− si,t)wi,t. (2)

Here we denote by βt = β + εβt the intertemporal discount rate with an i.i.d.

zero-mean preference shock and by si,t the savings rate. pt is the price for

an asset of the class of risky assets in t and di,t = d + εdi,t its dividend with

an idiosyncratic stochastic term εdi,t ∼ N(0, σdt ) where σdt = σd + εdt is again

subject to an i.i.d. time-varying aggregate shock. Since those assets are ex-

ante identical, their price is likewise the same. The value τt captures a tax on

the stock level of wealth. For the empirical part it is crucial that taxes vary

in time. However, for the sake of readability the time index is suppressed in

this section. We want to assume that our taxation is a redistributive transfer

towards the bottom shares of society. Given that we model the shares of

the top wealthy, any positive lump-sum transfers are negligible. The above

problem does not directly entail a closed form solution, but can be separated

into two stages that both are relatively standard in the literature. Let us

first solve the consumption problem.

Levhari and Srinivasan (1969) show that for log-utility, which is a partic-

ular case of Constant Relative Risk Aversion (CRRA) preferences, in equi-

librium agents consume 1− βt of their wealth at the end of each period, i.e.

si,t = βt ∀i, t.8 It is important to point out that this result holds despite the

8Levhari and Srinivasan (1969) derive a more general result for CRRA utility (u(c) =
c1−γ

1−γ ) and i.i.d. returns. Depending on whether the income (γ > 1) or substitution effect
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tax rate. Due to the exact offsetting of income and substitution effects for

log-utility the savings rate is not distorted by the tax rate.9 Note that the

assumption of CRRA also explicitly avoids inequality dynamics induced by a

different marginal propensity to consume. Thus, the law of motion for each

individual’s wealth follows

wi,t = (1− τ)βtR
z
i,t(zi,t−1)wt−1, (3)

for which Rz
i,t(zi,t−1) summarizes the individuals gross return on investment.

For the second stage, in which we solve for the optimal demand for risky

asset xi,t, let us use Equation (1) to rewrite the maximization problem as

max
z
Et

∞∑
k=0

βt+k
t+k ln{(1−βt+k)wi,t+k} s.t. wi,t = (1−τ)βtR

z
i,t(zi,t−1)wi,t−1∀t ∈ N

which is equivalent to

max
z
Et

∞∑
k=0

βt+k
t+k ln

{
(1− βt+k)βt+kwi,t(1− τ)k

k∏
l=0

Rz
i,t+l(zi,t+l−1)

}
.

Due to the logarithmic laws the term ln{∏k
l=0R

z
i,t+l(zt+l−1)} can be separated

(0 < γ < 1) dominates, individuals adjust their savings by taking into account the risky
savings technology. The special case of perfectly offsetting income and substitution effects
(γ = 1) assumed here implies that the nature of the stochastic returns has no impact on
the savings decision.

9The interested reader is also referred to Lansing (1999), who shows that the result of
a zero optimal tax rate as proposed in Judd (1985) fails to hold with log-utility. Also see
Straub and Werning (2014) for a more recent and general approach.
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and is the only part that depends on zt. Since we can rewrite
∏k

l=0R
z
i,t+l(zi,t+l−1) =

Rz
i,t(zi,t−1)

∏k
l=1R

z
i,t+l(zi,t+l−1) this portfolio problem can be well-approximated

by mean-variance maximization, as laid out in Pulley (1983). The optimal

demand for the risky asset xi,t is then, up to a second order approximation,

given by

xi,t = zi,twi,t = (Et[dt+1 + pt+1]−Rpt)wi,t/σdt
2
. (4)

Note that – identical to the optimal consumption plan – the portfolio struc-

ture is independent of the wealth tax. As presented in Stiglitz (1969) for

Constant Relative Risk Aversion preferences – of which the assumed log-

utility is a special case – wealth taxation does not lead to a restructuring of

the portfolio.

Let us assume that return expectations are heterogeneous and each agent’s

expectation is a draw from the normal distribution around the rational ex-

pectation of future returns. Thus, the rational expectation operator E is

replaced with a noisy individual expectation operator Êi,t, giving

Êi,t[dt+1 + pt+1] = d+ Etpt+1 + εEi,t, εEi,t ∼ N(0, σEt ),

where σEt = σE + εσt as well can be subject to the i.i.d. time-varying aggre-

gated news shock εσt .

Assume furthermore that no single person is rich enough or has an εEi,t

large enough to influence the price.10 Market clearing requires
∑

i xi,t = Xt,

10This is satisfied by the law of large numbers. This assumption enables us to provide
analytic results for the law of motion of individual wealth, aggregated wealth, and prices.
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with Xt being the total supply of the risky asset. Without loss of generality

we can fix supply and normalize Xt = 1 to unity for all periods.

Keeping this in mind and aggregating over Equation (1) and (4) yields

pt = R−1(Etpt+1 + dt+1 − σdt
2
W−1
t ) (5)

Wt = β(RWt−1 + dt + pt −Rpt−1), (6)

which is the law of motion for prices and aggregated wealth Wt. Note that

for the stationarity of aggregate wealth, redistribution of tax proceedings is

required. If this was not the case, in the long run all private wealth would be

transferred to the government. If we assume that all variables are detrend,

due to the law of large numbers idiosyncratic disturbances level out and

aggregate wealth Wt = W is constant in the absence of aggregate shocks.

The values of prices and aggregated wealth thus reflect the detrend steady

growth path.11 Then, we can also normalize the price to unity without

explicitly accounting for market clearing. The steady state versions of (5)

and (6) are

σ2
d/W = d+ 1−R (7)

W (β−1 −R) = d+ 1−R. (8)

11This assumption implies that growth in aggregate wealth can be attributed to an
exogenous growth rate which does not distort distributional properties.
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This implies that, given the normalization of prices,

W =
σd

(β−1 −R)0.5
(9)

d+ 1−R = σd
(
β−1 −R

)0.5
. (10)

Plugging Equation (4) into Equation (1), integrating individual forecast er-

rors and setting prices to the steady state yields

wi,t = βt
{
R +

(
d+ 1 + εdi,t −R

) (
d+ εEi,t + 1−R

)
σ−2d
}

(1− τ)wi,t−1. (11)

which together with Equation (10) and some algebra can be written as the

law of motion (LOM) for individual wealth

wi,t = βt

{
β−1t +

(
β−1t −R

)0.5
(εdi,t + εEi,t)/σ

d
t + εdi,tε

E
i,tσ

d
t

−2
}

(1− τ)wi,t−1.

We use annual data, so let β = 0.95. For realistic values of the mean real

interest rate R we have (β−1 −R)
0.5 ≈ 0 to be negligibly small.12 After

defining γt ≡ βt
σE
t

σd
t

and εi,t ≡ εdi,tε
E
i,t to be the product of two independent

random variables that follow a standard normal distribution, the final law of

12A positive demand for the risky assets requires R < 1 + d. Stationarity of aggregate

wealth further demands for R < β−1 < 1 + d i.e.,
(
β−1 −R

)0.5
> 0 but small. The

variance of εEi,t is already of small magnitude. Rewriting εdi,t in terms of a standard normal
reveals that the term is negligible.

17



motion can be further simplified to

wi,t = (1 + γtεi,t) (1− τt)wi,t−1,

γt now contains the aggregate shocks εβt , εdt and εσt and the expected value γ

remains as the only free parameter of our model.

4 Representation in Closed Form

This section aims to enrich our understanding of the process that gen-

erates the wealth distribution by finding a closed form solution for the sta-

tionary distribution as well as for the transition dynamics. In order to do so,

we have to overcome some technical obstacles. For better readability we will

omit the aggregate shocks until the end of the section as they do not have

an impact on the shape of the distribution.

4.1 Cross-sectional distribution

The portfolio returns, a product of two standard normal variables, follow

a so-called product-normal distribution. To obtain a closed form solution, we

have to transfer this distribution to another distribution that can be handled

analytically.

Proposition 1. The first three moments of the product normal distribution

and the Laplace distribution with shape parameter of λ =
√

0.5 are equal.

Proof. See Online Appendix B.

The Laplace distribution is very handy in our context for identifying a

closed-form solution. The individual law of motion (LOM) has to be rewrit-

ten in continuous time in order to solve the Fokker-Planck equations which
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allows us to identify the cross-sectional distribution in terms of the free pa-

rameters γ and τ . It then reads as

dwi = −τwidt+ (1− τ)γwidNP, (12)

for which NP is the noise following the product-normal distribution. In order

to retrieve a closed-form solution we transform this to the Laplace distribu-

tion using the scaling factor λ, which we just introduced. The equation thus

reads

dwi = −τ
λ
widt+

1

λ
(1− τ)γwidL, (13)

for which L signifies Laplace distributed noise.

Proposition 2. Using Itô’s lemma as a second-order approximation and

solving the Fokker-Planck equation, the right tails of the cross-sectional dis-

tribution (the top wealth holders) are described by a Pareto distribution with

a tail parameter α,

α = 1 +

√
2τ

γ2(1− τ)2
. (14)

Proof. See Appendix A.

It is important to acknowledge the necessary conditions for this result

to emerge. It requires both (i) mean reversion (µ > 0) and (ii) a positive

non-zero reflecting barrier (ŵmin > 0). Note that we do not model the

latter explicitly. Yet, one could consider that the overall proceedings of the
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wealth tax are redistributed to all individuals in an equivalent lump-sum

manner. For a given tax rate τ and a stationary average wealth w̄ the

latter would amount to τw̄. The two assumptions also have an important

economic implication. Mean reversion is achieved by a positive capital tax

rate that counteracts the multiplicative stochastic noise of the capital gains.

The second condition also ensures that the capital tax is not a net loss for

the private households. It moreover guarantees overall stationarity of private

wealth.

In fact, the complete distribution is characterized by the single value α.

Thus, other measures regarding inequality can be derived starting from this

assumption.

Proposition 3. The stationary (t → ∞) share sx(τ,∞) of the top x (e.g.

the top 1% implying x = 0.01) wealth holders is given by

sx(τ,∞) = x1−1/α, (15)

for which α, as above, is implicitly a function of taxes τ and γ.

Proof. The result is well known and can be derived by computing the closed

form value of the Lorenz curve given by L(F ) = 1 − (1 − F )1−1/α and then

calculating sx = 1− L(1− x).

The same rationale can also be used to derive a closed form expression

for the Gini coefficient. In general a high tail coefficient α is accompanied by

low inequality.13 This very neat result has some strong implications for the

13The closed-form value for the Gini coefficient is given by Gini(w) = 1
2α−1 and decreas-

ing with α for the realistic case of α > 1. Note that then it also holds that ∂
∂αs

x(τ,∞) < 0.
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asymptotic behavior. First of all, without taxation τ = 0 the tail-coefficient

is α = 1, frequently referred to as Zipf’s law. In fact, the Gini coefficient

then takes the value of Gini(w) = 1 and sx(τ) = 1 for all x ∈ (0, 1], implying

total inequality.14 Thus, in a laissez-faire economy without government inter-

vention, there is no finite level of inequality. In general, inequality increases

(α decreases) with γ while decreasing with taxation τ . For the extreme case

of τ → 1 - which can be thought of as a completely egalitarian society - we

would have α→∞, and thus have a Lorenz-curve identical to the 45-degree

line and thus no inequality at all.

4.2 Convergence dynamics

We can also make a statement about the convergence speed.

Proposition 4. The convergence of the Laplace-transformed pdf (Lf(ŵ, t) =

F (s, t)) is given by

F (s, t)− F (s,∞) ∼ exp(−φt), (16)

with an average convergence speed of

φ = (0.5γ(1− τ)α)2 . (17)

For a one period gap it is given by

F (s, t) = F (s, t− 1) exp(−φ) + F (s,∞)(1− exp(−φ)), (18)

14Or put differently, the overall process is a unit-root process which not only lacks a
finite variance, but is also characterized by an exploding mean. Thus, in the long run the
Lorenz curve is a flat line at zero implying maximum inequality.
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Proof. See Online Appendix C.

This implies a half-life of t0.5 = ln(2)
φ

. In fact the effective taxation τ

not only decreases steady-state inequality, but also increases the speed of

convergence to the latter. This also means that there is an asymmetry in

the convergence. The increase of inequality for low taxes is slower than the

decrease after high tax rates. Thus, the implication for the policy maker is

that it is faster to come down to lower inequality rather than to increase the

level of inequality. Finally, we use this general result in order to make an

approximate statement about the evolution of top-shares which are the focus

of the recent empirical literature and thus also take in a central position in

this paper.

4.3 Estimation model

Note that so far we ignored the time dimension. Let us assume that the

value of γ is constant in time. Yet, due to policy changes the tax rate τt is

varying in time. Thus, not only the stationary level of inequality as modeled

by the Pareto-tail αt varies in time t, but so does the convergence speed φt.

Proposition 5. Ignoring aggregated shocks, the top-shares approximately

evolve according to an autoregressive process of first-order with

sxt = ρts
x
t−1 + (1− ρt)sx(τt,∞), (19)

and ρt = exp(−φt) for the average convergence speed φt = φ(τt) as defined in

Equation (17).

Hence, the share owned by the fraction x of the population is a linear

combination of the last period’s share and the share of the top x of the
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stationary distribution given the tax rate τt at each time t. Let us now

reintroduce the aggregated shocks, which are important for the estimation.

The cross-sectional shocks σEi and σdi – indicated by the subscript i – drive the

cross-sectional distribution in the first place and are represented through the

transformations above. Aggregated shocks affect the behavior of all agents

equally and hence can introduce aggregate temporary fluctuations to our law

of motion for top shares. We summarize these in a composite shock term εst .

Proposition 6. As a first-order approximation around the stochastic steady

state and using the central limit theorem, the law of motion including aggre-

gate time-varying shocks can be summarized by

sxt = ρts
x
t−1 + (1− ρt)sx(τt,∞) + εst (20)

εst ∼ N (0, σs). (21)

Proof. Let us write out that sxt (γ(εβt , ε
d
t , ε

σ
t ), τt)) is a function of the three ag-

gregate unobserved i.i.d. shocks. These shocks operate on the idiosyncratic

risk εd, the standard deviation of disagreement εσ, and the rate of time pref-

erence β. Using the multivariate Taylor approximation around the expected

value where all shocks are zero yields

sxt (γ(εβt , ε
d
t , ε

E
t ), τt) ≈ sxt (γ, τt) +

∂sxt
∂γ

∂γ

∂εβt
εβt +

∂sxt
∂γ

∂γ

∂εdt
εdt +

∂sxt
∂γ

∂γ

∂εEt
εEt

for which

23



εst :=
∂sxt
∂γ

∂γ

∂εβt
εβt +

∂sxt
∂γ

∂γ

∂εdt
εdt +

∂sxt
∂γ

∂γ

∂εEt
εEt

is the sum of zero-mean i.i.d. random variables each multiplied by a constant.

Applying the central limit theorem this is approximately normally distributed

and the result in the proposition follows.

4.4 Comparative statics

So far it was assumed that there was a pure substance tax on the stock

level of wealth, which is not in place in the US. Yet, the stock level of wealth

is subject to other more subtle forms of taxation. In particular, for the case

of the USA – our empirical application in the next section – net capital gains

are taxed. Of course taxes are only levied on positive measures – i.e. capital

gains – and not losses. We thus have to translate between the measures.

Proposition 7. The gross-wealth tax τ given a capital gains tax θr can be

approximated by finding a τ such that the expected value of after tax returns

from a capital gains tax and after tax returns of a gross-wealth tax are equal.

Gross-wealth taxes are then given by

τ =
1

2
γλθr. (22)

Proof. Dropping time subscripts for taxes, the after-tax returns given the

capital income tax θr are

R̄θr = 1 +

(1− θr)γεi,t if εi,t > 0

γεi,t if εi,t ≤ 0.
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To use the LOM in Equation (19) we approximate τ given θr by finding

a τ such that the expected value of R̄τ equals the expected value of R̄θr .

Then, given that εi,t approximately follows a Laplace distribution with scale

λ =
√

0.5, the expected value E[εi,t|εi,t ≤ 0] is the mean of an exponential

distribution with inverse scale λ, which is again λ. Then

ER̄τ = ER̄θr

E {(1− τ) (1 + γεi,t)} = 1 + γP (εi,t ≤ 0)E[εi,t|εi,t ≤ 0] + (1− θr)γP (εi,t > 0)E[εi,t|εi,t > 0]

1− τ = 1− 0.5γλ+ 0.5(1− θr)γλ

τ =
1

2
θrγλ,

where P (εi,t > 0) denotes the probability that εi,t is positive.

Finally, our model is fully specified, allowing us to conduct some compar-

ative statics. To obtain some intuition, let us plug Equation (22) into the

closed-form solution from Equation (19), and for simplicity take (1− τ) ≈ 1.

Then

sxt = exp(−φt)sxt−1 + (1− exp(−φt))x1−1/αt ,

with

αt(θr,t) ≈1 +
0.5θr,t
γ

,

φt(θr,t) ≈
1

4
γ2 +

1

4
θr,tγ +

1

16
θ2r,t,
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for which follows that if the system is at the steady state

∂sxt
∂γ

> 0 >
∂sxt
∂θr,t

and
∂|∆sxt |
∂θr,t

,
∂|∆sxt |
∂γ

> 0.

The weight on the most recent value sxt−1 decreases in the transition speed,

which depends positively on taxes θr,t and dispersion γ. This means that in

terms of inequality dynamics, an increase in dispersion γ is a complement

to an increase in taxes and will speed up dynamics. However, in terms of

inequality levels these two have opposing effects: an increase in taxes θr,t

decreases the stationary level of inequality, while a higher value of γ will

increase it.

It is also insightful to keep in mind the definition of γ = β σ
E

σd to decompose

the effects. We have a higher degree of wealth inequality (as measured by top

shares) for high disagreement σE. Meanwhile – and somewhat surprisingly

– wealth concentration decreases for high idiosyncratic risk σd. The latter is

due to the fact that individuals incorporate risk into their portfolio decision

by increasing the share of risk-free assets. Finally, the inequality increases

with the discount factor β which for the assumed case of log-utility is equal

to the savings rate. Thus, high savings are accompanied by higher degrees

of wealth inequality. In terms of dynamics, both the higher savings rates

and higher expectation disagreement increases the dynamics, whereas higher

idiosyncratic risk slows down the dynamics.

5 A Quantitative Exploration for the USA

In this section we make use of Maximum Likelihood Estimation (MLE)

to fit the model specified in Equation (20) to the empirical top-wealth shares

26



of the US economy, while feeding-in the series of taxes as the sole input. We

perform out-of-sample forecasts to test the model against the data. In the

last step we forecast the concentration of wealth given different scenarios of

taxation.

For the top-wealth data we rely on the recent study of Saez and Zucman

(2016) which is made available at wid.world employing income tax data

and using a capitalization technique to translate this to the stock measure of

wealth. For the data on capital gains top-tax rates we use the estimates con-

ducted in Sialm (2009).15 The First World War and its (financial) aftermath

was accompanied by a brief but very substantial raise from an extremely low

top tax rates of 7% up to values as high as 73%. Since the extreme circum-

stances surrounding 1921 complicate the analysis, we start our investigation

after World War I from 1922 in which tax rates reduced to a stable level of

12.5%. The last observation on the top 1% is obtainable for 2012. The tax

series is transformed as suggested in Proposition 7.

In the United States, individuals generally pay income tax on the net of

their capital gains. There are a considerable number of exemptions, depend-

ing on investment duration, net-worth, and general status. The series in use

here represents the maximum tax rate on returns with positive net capital

gains which prevail for the top wealthiest individuals. This has the great

advantage that it is a tax explicitly and only on capital gains, which are

the focus of our model. Yet, we note that reducing a complicated system of

progressive personal taxation to just one number bears the risk of misalign-

15The original paper provides estimates until 2006. We are very grateful to Salvatore
Morelli for providing us with his updated estimates for the more recent years.
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ment. It is further worth noticing that the specific tax rates (for the US case

especially the income and dividend taxes) are highly positively correlated.

From the given set we consider the capital gain tax to be the one with the

highest explanatory power. In contrast to a bequest tax only collected at

an individual’s death16, it is regularly imposed. As opposed to the tax on

(labor) income, which is only constitutes a minor share overall income for

top wealthy individuals, the capital gain tax is directly related to the stock

measure of wealth. For the US case taxes on dividends are higher or equal

than capital gains taxes (Sialm, 2009), but these higher taxes can be avoided

by paying out business income associated with stocks in new shares rather

than in dividends. Thus, general capital gains taxes are expected to have the

highest explanatory power as they form a lower bound.

The discussion of the causality between wealth concentration and taxation

naturally involves the question of tax evasion. An increase in taxation could

in particular motivate wealthy households to move their wealth offshore, lead-

ing to a lower aggregated stock of capital but also to lower concentration of

wealth. In our dataset an estimate of offshore wealth is already incorporated

in order to capture tax evasion.17 Note that if tax evasion would increase with

the level of taxation, this would imply a decrease in the wealth-income ratio

when taxes are high, which cannot be confirmed by the data from Piketty

and Zucman (2014).

Let us first estimate the two model parameters for the complete sample

16Inheritance taxes are important for intergenerational mobility. A discussion on inher-
itance taxes can be found e.g. in Benhabib et al. (2014).

17The topic is also treated in detail in Alstadsaeter et al. (2017).
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Figure 2: The model-implied mean of the top-1% together with the empirical data (dots)
and the tax series.
Notes: Input and output data from year 1922 – 2012. The shaded area present 95%
confidence bands. Estimated values: γ̂ = 0.346; Std. dev. of shocks σ̂s = 1.08%.

length and focus on the share of the wealthiest 1% of the USA. In Figure

2, we show the performance of the estimated model by initializing a set of

10,000 batch runs with the first observation of the data and only feeding in

the tax series. The dashed line stands for the analytic result of the stationary

cross-sectional distribution implied by the tax rate θr,t at time t, i.e. the share

to which the distribution will converge if time goes to infinity. For this reason

the shares of the stationary distribution jump with each change in the tax

rate. The median of the simulation follows more slowly and, in line with the

data, slowly converges towards the stationary value.

The corresponding estimate of γ = β σ
E

σD is γ̂ = 0.346. The finance litera-
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ture usually uses a value of σd in the range from 0.08 to 0.3 (Campbell and

Viceira, 2002) on a quarterly basis. Greenwood and Shleifer (2014) estimate

a quarterly standard deviation of return disagreement ranging between 1%

and 4%. The annual discount rate is assumed to be 0.95. Combining and an-

nualizing these values suggests that our estimate for γ lies in the reasonable

range from about 0.02 to 0.45 and implies furthermore that the standard

deviation of agents’ forecasting errors is yet quite small compared to the

standard deviations of returns. Thus, the estimated value is in line with rel-

atively low disagreement variance as compared to return variance. We also

report 95% confidence bands.

Our long-run time series captures very different episodes in the US history.

Despite its very parsimonious nature the model matches both the level and

dynamics of wealth inequality for period of 90 years very well. Starting after

the First World War the inequality substantially increased to peak shortly

before the outburst of the Great Depression. Eventually, our model slightly

understates the peak level of inequality by assuming a constant value of

γ. The speculative boom leading up to the Great Depression suggests a

(temporary) increase in disagreement σE implying a higher value of γ for

that period, going along with higher inequality. After the Great Depression

top tax rates markedly increased to a new level after the end of the Second

World War which is accompanied by a decline in wealth concentration, as

predicted by the model. Following an increase of capital gains taxes starting

in the late 1960s, inequality decreases until the Reagan period, in which taxes

return to the previous level.

In the period of deregulation in the late 1980s taxes return to their rel-
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atively low level from the 1950s, making inequality catch up to its postwar-

level. Finally, the substantial tax decreases in the late 1990s and the early

2000s initiate a sizable increase in wealth inequality. Similar to the Great

Depression the model underestimates the level of inequality prevailing in the

Dot-com asset boom (early 2000s) by (implicitly) assuming a constant value

for γ. Like the Great Depression the Dot-com asset boom was accompanied

by a major dispersion in investor opinion σE implying a higher (temporary)

level of inequality.

The presence of a closed-form solution also allows to disentangle the sta-

tionary distribution (as displayed by the dashed line in Figure 2) and the

slow time convergence. As shown it was only in the years of both stable

taxation and inequality from the 1950s to the early 1960s that the stationary

distribution coincides with the actual level of wealth concentration. This is

of notable importance since these periods are omitted in the work of others

discussed earlier (Hubmer et al., 2016; Aoki and Nirei, 2017; Cao and Luo,

2017). Thus, a stationary wealth distribution is imposed in the starting year

which is a highly problematic assumption for the years ranging between 1970

and 1990. This then might also lead to misleading predictions about the

future evolution of wealth inequality.

As stated in Proposition 6 the model requires that the error terms of the

residuals exhibit the i.i.d. property. Figure 3 plots the residuals at each

point of time. With a formal Ljung-Box test the hypothesis that the auto-

correlation parameter of the residuals is zero, cannot be rejected. Eyeballing

however suggests that residuals might exhibit heteroscedasticity with a sub-

stantially larger variance in the period until the end of the Second World

31



War as compared to the following periods as observable in Figure 3. Thus, a

formal Anderson-Darling test for normality is rejected for the entire sample

at a significance level of 1%. Meanwhile, the same test for the subperiods

until 1945 respectively afterwards cannot reject the normality of the subsam-

ples. The higher variance of model residuals in the early periods can be due

to several reasons. First, the quality of very old data is generally inferior.

Thus, the measure of wealth inequality in the early periods is subject to

higher measurement error. Secondly, the change in variance might be due to

structural changes exogenous to our model, given that these time periods are

characterized by major (temporary) disruptions such as the Great Depres-

sion and the Second World War (also posing a measuring challenge). Lastly,

it may be that in the early years of our sample different structural reasons

had impact on the dynamics of wealth concentration which over time lost

relevance. Yet, overall the estimated standard deviation of the error term,

σ̂s = 1.08%, is relatively small given the parsimonious nature of our model.

So far the model was estimated and evaluated for the complete sample

period. To further assess the robustness of the model we conduct out-of-

sample forecasts for the top 1% share that are shown in Figures 4, 5 and 6.

We use the data until a given end point as the estimation period to estimate

γ and σs and then run a batch of 10,000 simulations starting from this end

date, while again feeding in the respective time series of taxes. Thus, in

Figure 4 the model uses 18 observations (until 1940) in order to predict the

remaining 72 observations (i.e. 20% of the overall sample). In line with the

higher variance of residuals in the earlier years is the increase in the estimated

standard error of shocks of σ̂s = 2.67%. Again the model captures well both
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Figure 3: Model residuals

Notes: Formal tests reject the hypothesis of

autocorrelation. There is substantial het-

eroscedasticity in the error terms. Taken

separately, normality holds for both the pre

and post World War II sub-samples.
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Figure 4: Out-of-sample testing for the time
series from years 1940 – 2012.

Notes: The model estimation uses the pe-

riods 1922 – 1940 as sample, where the re-

maining periods are out-of-sample forecasts.

Estimation value: γ̂ = 0.358. Std. dev. of

shocks σ̂s = 2.67%.

the level and the dynamics of wealth inequality.

As a further robustness check we change the composition of in- and out-

of-sample data and estimate the parameters using the empirical evidence

until 1975 (cf. Figure 5) respectively until 1990 (cf. Figure 6). As expected,

averaging over a sample period that includes the later years reduces the

estimated standard error of shocks σ̂s.

Interestingly, starting the out-of-sample period in 1975 (cf. Figure 5)

gives a lower value of γ̂ as compared to the one with the full sample period

(cf. Figure 2) and especially the one estimated with the period until 1940 (cf.

Figure 4). By excluding the increase in the recent years (as compared to the

full sample, Figure 2) and also diminishing the impact of the volatile evolution

in the earlier periods (captured in Figure 4), the evolution of inequality is
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rather tranquil. This is captured by a low value of γ̂ also implying smoother

dynamics. This is also important because – if anything – the model slightly

overstates the dynamics. The latter fact is actually encouraging since – as

shown in Gabaix et al. (2016) – models trying to capturing the dynamics of

inequality (especially for income) usually massively understate its dynamics.

In the logic of our model higher values for γ leading to faster dynamics can

be rationalized by higher general disagreement σE which – suggested by the

model was especially prevailing in the turbulent times until the end of the

Second World War and after the 2000s with the Dot-com boom and the Great

Financial Crisis.

1920 1940 1960 1980 2000
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tax

Figure 5: Out-of-sample testing for the time
series from years 1975 – 2012.

Notes: The model estimation uses the pe-

riods 1922 – 1975 as sample, where the re-

maining periods are out-of-sample forecasts.

Estimation value: γ̂ = 0.344. Std. dev. of

shocks σ̂s = 1.12%.
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Figure 6: Out-of-sample testing for the time
series from years 1990 – 2012.

Notes: The model estimation uses the pe-

riods 1922 – 1990 as sample, where the re-

maining periods are out-of-sample forecasts.

Estimation value: γ̂ = 0.362. Std. dev. of

shocks σ̂s = 1.1%.

So far we considered – following the protests of the so-called 99% move-

ment – the almost proverbial top 1%. Saez and Zucman (2016) also provide
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more narrow share of the top 0.1% and 0.01%. Although the upper tail of

wealth is often approximated to follow a Pareto distribution, as discussed in

Blanchet et al. (2017), this does not match the actual distribution precisely.

As presented in Figure 8 the local Pareto coefficient is larger the more we go

into the tails of the distribution i.e. for lower values of x.18
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Figure 7: Local Pareto coefficient for log-
wealth ŵ in time for the model.
Notes: During transition the coefficient in-
creases for the top shares, after convergence
the coefficient is independent of the level of
wealth.
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Figure 8: Local Pareto coefficient for top-
shares x in time for the US evidence.
Notes: The coefficient does not only vary
across time, but also persistently increases
towards the tail.

A true Pareto distribution, however, is scale-free and thus exhibits the

identical Pareto coefficient regardless of the level of x. Thus, when estimating

the model for a more narrow share of top inequality we would get a lower value

of γ implying a larger value of the (local) Pareto coefficient α(x) (cf. Table

18We compute the local Pareto coefficient using the equation sx = x1−1/α ↔ α =
1/(1− ln(sx − x)). Similar evidence, is reported in Saez and Stantcheva (2018) who show
that the local Pareto coefficient of capital income increases in the tails. There is still
disagreement on whether wealth follows a true Pareto distribution or not (Clauset et al.,
2009; Chan et al., 2017; Vermeulen, 2016). To summarize the debate briefly, the Pareto
distribution is a good approximation which has some pleasant analytic properties, yet fails
to match the data precisely with the limitations pointed out above.
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1). Formally, we could capture this by assuming ex-ante heterogeneity of

individuals from different shares of the wealth quantiles having different γ(x).

An interpretation of this would be that the top rich have riskier portfolios

(i.e. higher σD)19 or lower expectation disagreement (low σE) due to better

financial knowledge or advisory.20 Gabaix et al. (2016) propose this type

dependency or superstar effects as a solution to the puzzle of failing to match

the dynamics of wealth inequality. In this case, we could maintain our simple

regression equation and also fit more narrow shares. However, this is not in

line with the assumption of ex-ante identical agents (cf. Section 3).

Table 1: Parameter estimates for the filter using different series of top-shares from 1945
as input.

Top-shares γ̂ σ̂s
1 0.358 2.67%

0.1 0.28 0.6%
0.01 0.253 0.4%

Notes: The estimated standard errors are also a measure of the goodness of fit. In line
with Figure 8 the value of γ decreases for higher quantiles.

In fact, we do not have to make an assumption of ex-ante heterogeneity

as the behavior of increasing Pareto coefficients in the tail is coherent with

the overall model. In Online Appendix D we discuss the (non-stationary)

closed-form solution of the Fokker-Planck equation. It turns out that in the

short run the distribution resembles a log-normal distribution with increasing

19Note this mechanism is also at play in Kasa and Lei (2018). Combined with higher
savings rates of the rich, the growth rate of wealth increases with the level of wealth.
This scale dependency (as opposed to ex-ante type dependency) is micro-founded by the
presence of Knightian uncertainty.

20A third option would be the assumption of heterogeneous thriftiness (time preference
β) as e.g. entertained in Krusell and Smith (1998) in order to match top wealth inequality.
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Figure 9: Projections using tax rates of 15%, 23% and 28%, estimation based on the
post-1945 sample

Notes: For the prevailing tax rate (23%) we expect a decrease to a level comparable to

the early 2000s. If the tax rate was increased to the level of the end of our sample in

2012 (15%), wealth inequality is expected to increase and to level off close to 45%. A

substantial reduction to the level of 1980, on the other hand, will decrease inequality to

the level of the late 1990s.

Pareto coefficients in the tails.21 The increase in inequality is slowly trans-

mitted to the fat ends of the tails. In line with Gabaix et al. (2016), in this

type of model the convergence is slower in the tails. In fact, in the short run

for the non-stationary distribution the local Pareto coefficient increases in

the tail for high values of log-wealth ŵ (cf. Figure 7).22 This is in line with

the empirical results as presented in Figure 8. Unfortunately, the overall

evolution of the model – in particular the local convergence speed – is highly

non-linear making it unfeasible to estimate the complete dynamics jointly.

Finally, we employ the model for some policy analysis. In Figure 9 we

21For a true log-normal distribution the estimated Pareto tail in the tails would diverge,
i.e. limŵ→∞ α̂(ŵ) =∞.

22The figure is generated using the time-varying solution of the Fokker-Planck equation,
as presented in Appendix D.
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show forecasts using the estimated parameters and different tax regimes. As

of 2017 the actual tax rate calculated as above is at 23.8%. This episode is

not included in our series since Saez and Zucman (2016) only provide data

for top inequality until 2012. An unchanged tax regime would be sufficient

to reverse the trend and bring inequality back to the level of the early 2000s.

A further increase to 28%, which is the level from 1980, would lever the

concentration back to its value from the 1990s. In this case the share of the

top 1% would almost fall down to the level currently held by the top 0.1%,

implying a considerable level of redistribution. On the other hand, a decrease

of taxation back to the level of 2003-2012 (15%) would result in a further

increase of inequality as seen before the Second World War. The simulations

also confirm our analytic result that the decrease in inequality after tax

increases is faster than the ascent of inequality following tax reductions.

6 Conclusion

The main purpose of this work is to develop a simple, yet microfounded

portfolio selection model that allows us to study the relationship between

the dynamics of wealth inequality and empirical tax series. Although a quite

straightforward approach, this stands in contrast to the majority of the the-

oretical literature on wealth inequality which takes income inequality as a

starting point. We emphasize the role of equity trading and marginal hetero-

geneous expectations about asset prospects as a mechanism explaining top

wealth inequality.

We apply this model to explain long-run dynamics of wealth inequality in

the USA, which experienced periods of both substantial decrease and more
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recently a rapid increase of inequality. Due to the parsimonious nature of

our model the degree of freedom to fit the empirical evidence is very limited.

Nevertheless, our model matches the data well, both in levels and also in

transition speed. In particular, and in contrast to much of the rest of the

literature, we are able to match both, up and downturns in the concentration

of wealth. Our analytic results emphasize that the level and the transition

speed of wealth inequality depend crucially on the degree of capital gains tax-

ation, which is quantitatively and qualitatively in line with of the estimated

model. We conclude that the given tax series have a very high explanatory

power regarding the dynamics of US wealth distribution over a very long

time period of 90 years.

This also implies that one answer on the policy question on how to influ-

ence the distribution of wealth – and potentially reverse the recent increase

in wealth inequality observed in developed economies – can be given by look-

ing at the tax system. An increase in capital gains taxes, or alternatively a

gross tax on wealth as suggested in Piketty (2014), will very likely reduce

wealth concentration and has the potential to upturn the observed trends.

Our projections predict that, for the USA – continuing on the present path

of capital taxation – the gap between rich and poor is expected to shrink

whereas substantial tax cuts will further increase the degree of wealth con-

centration. Our analyses further suggests that effects of tax avoidance or

evasion are, from the macro perspective, of second order.

There are two implications for future research. Although our model fits

the data quite well, there are periods where it falls short of accounting for

the data. First, we consider it important to identify whether the those short-

39



comings are due to measurement errors, or to reasons that are exogenous to

our model. Second, if these reasons are exogenous it is crucial to investigate

them further.

Further, the quality of the model’s result severely hinges on the quality

of the data. A better availability of data on wealth dispersion at higher

frequencies and for different countries would give better means to improve

our model and enhance the understanding of the issue of wealth inequality

in the 21st century.
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Appendix A Proof of Proposition 2

Let us define the log of wealth ŵi,t = log(wi,t) and apply Itô’s lemma as

a second-order approximation. Thus the equation reads

dŵi ≈
(
−τ
λ
− 0.5

γ2

λ2
(1− τ)2

)
dt+

1

λ
(1− τ)γdL = −µdt+ δdL,

with a diffusion term δ ≡ 1
λ
(1 − τ)γ and a drift µ ≡ τ

λ
+ 0.5γ

2

λ2
(1 − τ)2 =

τ
λ

+ 0.5δ2. As shown in Toda (2012), the Laplace distribution with unit

standard deviation can be modeled by

dL = −λ sign(L)dt+ dB

with B being the standard Brownian motion and sign(x) = x
|x| representing

the sign function. In essence, this is a Brownian motion which reverts to its

zero mean both in the positive and the negative domain. Thus, the noise

in the returns ε before taxes (approximately) follows a Laplace distribution

with a zero mean

f(ε) =
0.5

γλ
exp

(
− |ε|
γλ

)
,

which can be understood as a symmetric double exponential distribution.

This result will also be of use in Proposition 7. If we ignore the fat-tail

properties in the returns – induced by the mean reversion – we can model

the wealth evolution of the wealthiest individuals by
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dŵi = −µdt+ δdB, ŵi,t >> 0. (A.1)

The cross-sectional distribution can be found by solving the so-called Fokker-

Planck equation23

∂f(ŵ, t)

∂t
= − ∂

∂ŵ
(µf(ŵ, t)) + 0.5

∂2

∂ŵ2

(
δ2f(ŵ, t)

)
.

We first consider the stationary distribution (∂f(ŵ,t)
∂t

!
= 0). The solution is

well-known (Karlin and Taylor, 1981, p. 221) and given by24

f(ŵ) = C exp(−αŵ), (A.2)

for ŵ > ŵmin = ln(wmin) with an integration constant of C = wαminα to

ensure
∫∞
ŵmin

f(ŵ)dŵ = 1. For our case we have

α =
2µ

δ2
= 1 +

√
2τ

γ2(1− τ)2
. (A.3)

It is easy to transfer the exponential distribution to a Pareto distribu-

tion. In fact, if ŵ follows the described exponential distribution, wealth

23The latter is frequently also referred to as Kolmogorov forward equation. The terms
can be used interchangeably. Note that our proof heavily relies on second-order approxi-
mations. This is not problematic for realistic values of α < 2, for which only the first two
moments exists. The Fokker-Planck equation is a second-order approximation to the more
general Master equation while the use of Itô’s lemma is also a second-order approximation.
For noise generated by a Brownian motion (rather than the product-normal distribution)
it would hold exactly.

24A more formal derivation using Laplace-transforms is presented in Appendix C, also
determining the average convergence speed.
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w = exp(ŵ) is given by the probability density function

lim
w→∞

f(w) ∼ w−α−1.
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ONLINE APPENDIX NOT INTENDED FOR PUBLICATION

Appendix B Proof of Proposition 1

The product-normal distribution is treated extensively in Craig (1936).

The probability distribution function is given by

f(zPN) =
1

π
K0 (|zPN |) , (B.1)

with zPN ≡ ε1ε2 with εi ∼ N(0, 1) and K0 being the modified Bessel-function

of the second kind. The function is symmetric around the mean of zero and

exhibits leptokurtic behavior. It is more appealing to write this using the

Moment-Generating Function (MGF), which in this case is given by

MZPM
(t) =

1√
1− t2

. (B.2)

Using this it is easy to show that the mean and skewness are zero, while the

standard deviation is given by

SD(zPN) = 1. (B.3)

This distribution is highly comparable to the Laplace distribution. For a

zero-mean the probability density function of the latter is given by

f(zL) =
1

2λ
exp

(
−|zL|

λ

)
(B.4)

for shape parameter λ > 0, having both a mean and a skewness of zero. The

standard deviation of Laplace is
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SD(zL) =
√

2λ. (B.5)

The Laplace distribution is also very appealing as each half takes the form

of an exponential function. The moment generating function of the Laplace

distribution is

MZL
(t) =

1

1− λ2t2 . (B.6)

Comparing this with the MGF of the product-normal distribution it becomes

obvious that the two are not identical. In fact, the sum of two product-normal

variables follows a Laplace distribution.25

As a reasonable approximation we replace the product-normal with the

Laplace distribution. To obtain the shape parameter λ that best approxi-

mates the standard normal product distribution we equalize the second order

Taylor expansions of both MGFs around t = 0, which in fact is equivalent to

choosing λ to match the first two moments of the function. This yields

2∑
n=0

∂nMZPM
(0)

n!∂tn
(t− 0)n =

2∑
n=0

∂nMZL
(0)

n!∂tn
(t− 0)n

1 +
t2

2
= 1 + t2λ2

λ =

√
1

2
≈ 0.707.

25Using the MGF it is easy to show that if there are four independently distributed
normal shocks with zero mean Xi ∼ N(0, σi) and we have σ1σ2 = σ3σ4 then X1X2+X3X4

follows a Laplace distribution with zero mean and λ = 1.
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Appendix C Proof of Proposition 4

The solution to the Fokker-Planck equation can be easily determined

using the Laplace transform into the frequency domain26 given by

L{f(ŵ, t)} ≡ F (s, t) ≡
∫ ∞
0

f(ŵ, t) exp(−sŵ)dŵ. (C.1)

The latter is of particular help for solving linear differential equations as the

n-th derivative is given by L{fn(ŵ)} = snF (s, t). For the right tail (index

r) the characteristic equation is given by

∂F (s, t)

∂t
= µsF (s, t) + 0.5δ2s2F (s, t) = Λr(s)F (s, t) (C.2)

with Λr(s) = µs + 0.5δ2s2. The stationary solution is found by setting

∂F (s,t)
∂t

!
= 0, leading to

Λr(s) = 0→ sr = −2µ

δ2
≡ −α. (C.3)

In this case, the cross-sectional distribution of log wealth ŵ ≡ ln(w) is

given by an exponential distribution, while wealth follows a Pareto distri-

bution. The value α is the rate parameter of the exponential distribution

respectively the Pareto coefficient.

This approach can also be employed to make a statement about the con-

vergence rate. As our paper only considers the top shares we focus on the

right tail of the distribution, as described by Λr(s). In fact the convergence

26This procedure is also employed in Gabaix et al. (2016) and Kasa and Lei (2018) to
solve similar problems.

52



rate of the n-th moment E(ŵn) is given by Λr(−n). For the example of the

mean it would be

Λr(−1) = −µ+ 0.5δ2 = −τ
λ
. (C.4)

It is well known that for the Pareto distribution only moments with 0 < n < α

exist. For the parametrization to fit the US wealth distribution we always

have α < 2. The average convergence time - as defined in Gabaix et al.

(2016) - emerges for n̄ = 0.5α = µ
δ2

. It is given by

Λr

(
s = − µ

δ2

)
= −0.5

µ2

δ2
< 0 (C.5)

Assume that the distribution starts at a stationary distribution F (s, 0). After

a shock in parameters the new stationary distribution is F (s,∞). Solving the

differential equation C.2, we find the convergence in the frequency domain

for some s is given by

F (s, t) = F (s,∞) + [F (s, 0)− F (s,∞)] exp(Λr(s)t). (C.6)

In this case, we have Λr(s) = −φ = − µ2

2δ2
as the average convergence rate.

More generally we can write it as

F (s, t+ τ) = F (s,∞) + [F (s, t)− F (s,∞)] exp(Λr(s)τ), (C.7)

which for our special case of τ = 1 implies
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F (s, t+ 1) = F (s,∞) + [F (s, t)− F (s,∞)] exp(Λr(s)). (C.8)

Appendix D Details on the time-dependent cross-sectional dis-

tribution

Figure D.10: Log-Cumulative probability density function: Stationary solution and time-
dependent solution

(Singer et al., 2008, p. 853) provide a full solution of the underlying

Fokker-Planck equation in the time domain for some given initial value ŵ0 =

0. We also want to assume that the reflecting boundary is ŵmin = 0 (i.e.

wmin = 1). The solution is given by
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f(ŵ, t) =
1√
πt2δ2

exp

(
− ŵ2

2δ2t

)
exp

(
−0.5αŵ − 1

8
α2δ2t

)
+f(ŵ,∞)Φ

(
− ŵ

δ
√
t

+ 0.5αδ
√
t

)
,

(D.1)

for which f(ŵ,∞) = C exp(−αŵ) describes the long-run stationary solution

and Φ is the cumulative probability density function of the normal distribu-

tion. We have C = αwαmin = α. For small time values t it is Gaussian, finally

converging to an exponential distribution. In terms of transformed values

w = exp(ŵ) this implies a transformation from log-normal to Pareto.

It is evident that the solution is both a function of time t and the value

of ŵ. Essentially, the function slowly fattens out to the tails (cf. figure

D.10). Thus, the measured Pareto tail α̂ decrease in time, but increases

with the value of ŵ. Technically, it never converges in the fattest tails

(limŵ→∞ f(ŵ, t→∞) 6= f(ŵ,∞)).

Acknowledging that the first part is a normal distribution with zero mean

and variance δ2t (exploding in time) and abbreviating this with f0(ŵ, t) as

well as using the definition of the average convergence speed φ = µ2

2δ2
= 1

8
α2δ2,

we can write:

f(ŵ, t) = f0(ŵ, t) exp(−0.5αŵ) exp(−φt) + f(ŵ,∞)Φ

(
− ŵ

δ
√
t

+ 0.5αδ
√
t

)
.

(D.2)

The very last term in the equation related to the normal CPDF captures

both the convergence speed (1− exp(−φt)) and the non-linearity adjustment

for f(ŵ,∞). It is obvious that this is incorporated in a non-trivial manner.

In the empirical application we choose a simplified non-linearity adjustment
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not least to keep the estimation feasible.
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