
An Ensemble MCMC Sampler for Robust Bayesian Inference

Gregor Boehl

University of Bonn

Abstract

This paper proposes a Differential-Independence Mixture Ensemble (DIME) sampler for the Bayesian es-
timation of structural models. DIME allows the estimation of models that are computationally expensive
to evaluate with challenging, multimodal, high-dimensional posterior distributions and ex-ante unknown
properties. It combines the advantages of gradient-free global multi-start optimizers with the properties of
Monte Carlo Markov chains to quickly explore the typical set. DIME is used to estimate a two-asset het-
erogeneous agent New Keynesian (“HANK”) model, for the first time including the households’ preference
parameters. The results point towards a less accentuated role of household heterogeneity for the empirical
macroeconomic dynamics.
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1 Introduction

Bayesian methods are used ubiquitously in all fields of economics since the pioneering work of Geweke
(1999) and Schorfheide (2000). They are an essential tool to bring complex structural models to the data,
such as modern New Keynesian-type DSGE models or Bayesian vector autoregression models. They allow
for the evaluation and comparison of the empirical performance of these models and the quantification of the
effects of potential policy actions. They provide a framework for incorporating prior beliefs and new data in
a coherent way, and allow for the explicit modeling of uncertainty, which is important for many economic
applications.

Yet, despite their powerfulness, the application of Bayesian methods can in practice be quite challenging
for two reasons: first, as the degree of complexity in contemporary economic models increases, so do the
computational costs of solving these models. Consequently, the number of model evaluations required by
Bayesian estimations may be prohibitively large. Second, Bayesian inference requires the identification of
and, subsequently, sampling from the typical set of the parameter posterior distribution associated with these

⋆Address: Institute for Macroeconomics and Econometrics, University of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany. I
am grateful to Christian Bayer, Flora Budianto, Cees Diks, Keith Kuester, Alexander Meyer-Gohde, Frank Schorfheide, Felix Strobel
and participants of several conferences and seminars for discussions and helpful comments on the contents of this paper. Part of the
research leading to the results in this paper has received financial support from the Alfred P. Sloan Foundation under the grant agreement
G-2016-7176 for the Macroeconomic Model Comparison Initiative (MMCI) at the Institute for Monetary and Financial Stability. I also
gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) under CRC-TR 224 (projects C01 and C05)
and under project number 441540692.

Email address: gboehl@uni-bonn.de



models.1 This posterior distribution usually is a highly complex topology with large dimensionality and
ex-ante unknown properties. Conventional Markov chain Monte Carlo (MCMC) samplers and optimization
tools often do not perform well on such distributions – while theoretical results show convergence as the
number of iterations goes to infinity, convergence is in practice not achived in finite time. Yet, the quality
and reliability of an estimation – and thereby their usefulness for economic analysis – crucially depend on
our ability to pin-down the posterior distribution precisely.

This paper substantiates this ability and expands the set of models feasible for estimation by introducing
a novel sampling approach: the differential-independence mixture ensemble (DIME) Markov chain Monte
Carlo method. In its core, the algorithm combines two novel concepts from the field of computational
astrophysics: the differential evolution method and independence sampling. While both methods come with
substantial weaknesses in practice, the DIME sampler exploits their complementaries while chancelling out
the individual shortcomings of the two methods. This creates a powerful tool to satisfy four central practical
requirements:

i) Good performance for high-demensional, multimodal and complex distributions.2

ii) Fast burn-in to the typical set of the posterior absent any prior posterior mode density optimization or
informative initial guesses.

iii) The speed of convergence scales well with the number of chains, allowing for the efficient use of
parallelization.

iv) The proposal distribution is generated endogenously from the current state of all chains, allowing to
sample from posterior distributions with ex-ante unknown properties.

Point ii) is in particular desirable to overcome the common practice to treat the identification of the
typical set of the posterior separately from the problem of actual sampling from it. The former is often done
using numerical optimization routines for mode finding, which may also consume a significant amount of
processing time. The problem is that the posterior of DSGE models is often not only high-dimensional, but
may also be discontinuous and feature many local maxima.3 Numerical optimizers tend to behave unstable
for such target functions, can show strong dependence on initial guesses, and may, if at all, only converge
to a local maximum that is rather distant from the typical set. Such bad starting points in turn tend to cause
malperformance of the actual sampling algorithm.

Point iii) is important because the progressive evolution of structural models makes them more and more
expensive to evaluate, e.g. because they include severe nonlinearities or because agents are heterogeneous
across multiple dimensions.4 As multi-core architectures are widespread nowadays and machines with larger
number of processors are successively becoming more affordable, researchers want to take advantage of this
development by being able to effectively run estimations in parallel, thereby significantly reducing total
runtimes.

To meet these requirements, instead of using a single or small number of recursive chains (such as e.g.
the random-walk Metropolis algorithm), DIME relies on an ensemble of a large number of chains which

1The typical set is an important concept in information theory. It can roughly be defined as the central log density band into which
almost all random draws from that distribution will fall (Betancourt, 2017; Carpenter et al., 2017).

2The term multimodal here in a broader sense, also refers to distributions for which the typical set is disjunct or exhibits discontinu-
ities.

3This may, e.g., be due to the model’s various cross-equation restrictions, a misalignment of prior and likelihood distributions.
or issues with indeterminacy. A forward looking model is indeterminate if there exists no unique rational expectations solution. An
additional problem with nonlinear models is that nonlinear Bayesian filtering is usually also based on sampling, leading to possibly
noisy likelihood estimates.

4See, e.g. Boehl and Strobel (2020), for the estimation of medium scale DSGE models with the zero-lower bound on nominal
interest rates as an example for nonlinear estimation, or Bayer et al. (2020) for the estimation of heterogeneous agent models.
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jointly evolve over time. For each iteration, proposals are generated based on the current state of the full
ensemble and, as the ensemble successively converges, proposal steps naturally adapt direction and scale of
the estimated posterior distribution. After convergence, the invariant distribution of all chains corresponds
to the target distribution. DIME is mixing between a local and a global transition kernel: the local kernel
explores the direct proximity of one particular chain. The global kernel, in contrast, reshuffles chains over the
complete domain of the current approximation of the posterior distribution. This means that DIME MCMC
is equally efficient in converging quickly to the high-density region of the posterior (called burn-in) and for
posterior sampling, and makes no difference between these two stages. The sampler can hence be seen as a
“Swiss Army knife” for structural econometric analysis.

The local transition kernel builds on the differential evolution (DE) concept developed in the literature
on global optimization. DE optimizes a function by maintaining a population of candidate solutions and
creating new candidate solutions by combining existing ones, and then keeping whichever candidate solution
has the best fitness on the optimization problem at hand. This can be turned into an MCMC method by
exchanging the last step by the Metropolis-Hastings algorithm.5 A major problem with this MCMC version
of DE is that, although proposals are state-dependent and adaptive, all chains evolve ex-ante independently.
This frequently causes the dispersion among chains to increase over time, which deteriorates the quality
of proposals, thereby inducing slow convergence of the full ensemble overall. DE-MCMC also does not
perform well with multimodal distributions because chains are unlikely to switch modes.

In contrast to the local kernel, at the core of the global transition kernel lies an ensemble version of a
modified adaptive Independence Metropolis-Hastings method, where candidates are created based on a pro-
posal distribution that is independent of the state of a single chain.6 This attribute makes the global transition
kernel fully robust against odd-shaped and multimodal distributions. However, independence Metropolis-
Hastings performs only well if the proposal distribution is stationary and close to the target distribution.
Since it is almost impossible meet this requirement ex-ante – the target distribution usually is a black box –,
the algorithm had limited practical appeal. To circumvent this problem, this paper develops a time-varying
proposal distribution that adjusts to new ensembles based on their average posterior density. This puts de-
caying weights on early samples but guarantees convergence to a stationary proposal distribution once the
average density of candidates converges. While this improves performance considerably, convergence of the
global transition kernel alone is still slow.

DIME MCMC exploits the complementarity of the local and global transition kernel: the combination of
the two kernel dispels the individual weaknesses. In a mixture, the global kernel occasionally reshuffles some
of the chains, which counteracts dispersion of the ensemble and ensures that individual chains do not “get
stuck” in local maxima. This, in turn, also increases the quality of the proposals from the local transition
kernel. The independent proposals from the global transition kernel also make sure that chains switch
between modes for multimodal distributions. The local kernel generates good proposal candidates during
burn in, which provides updates for the proposal distribution of the global transition kernel. Its differential
evolution heritage further allows DIME to be applied on target distributions (or objective functions) that
are discontinuous or noisy. Thus, DIME has some similarities to multi-start optimizers and searches the
complete relevant function domain. It hence combines the advantages of a broad class of global optimizers
with the properties of a Markov chain Monte Carlo (MCMC) sampler, satisfying requirements i) and ii).

The ensemble structure makes DIME MCMC “embarrassingly parallelizable”, which addresses point iii).

5See Storn and Price (1997) for the global optimizer and Ter Braak (2006); Nelson et al. (2013) for Differential Evolution MCMC.
6For independence Metropolis-Hastings see, e.g., Tierney (1994). For specifications of adaptive independence Metropolis-Hastings

see for example Haario et al. (2001) and Roberts and Rosenthal (2007). A similar algorithm from the global optimization literature is
the covariance matrix adaptation evolution strategy (CMA-ES, Igel et al., 2007).
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As I show in Section 4, the sampler scales well in terms of the quality of proposals (which increases with
the number of chains) and the number of iterations (lesser chains increase convergence rate per function
evaluation). The method is essentially self-tuning and only requires setting the number of chains as the only
necessary metaparameter, thus satisfying requirement iv).7

Additionally and independently from the core methodological contribution outlined above, I introduce
a bijective mapping between parameter and proposal space which ensures that the proposal distribution
respects the support of the prior distribution. This allows the sampling algorithm to run in unbounded
space, which helps to avoid large rejection rates due to draws falling outside the prior support and, thereby,
improves sampling efficiency. This is similar to the so-called bijectors which are applied in the literature on
neural networks (e.g., Dillon et al., 2017).8

Although DIME MCMC is straightforward to implement, this paper comes with reference implementa-
tions in Python and Julia programming languages, and for matlab. The implementations for Python and Julia
can directly be installed through the official software repositories and are actively developed at Github. The
Python package integrates into the established emcee-package, which is a collection of (ensemble) MCMC
samplers (Foreman-Mackey et al., 2013).9

I assay the performance of DIME MCMC on three distinct but important use cases. To start with, I
evaluate the algorithm’s capability to deal with high-dimensional and bimodal distributions with ex-ante
known properties. I document that the sampler performs well on such distributions, even when the two
modes (and thus the typical set) are fully disconnected. I then test the performance of the sampler on the
estimation exercise from Smets and Wouters (2007). DIME MCMC returns the original parameter estimates
independently of the number of chains used. For the given example, convergence times scale well with the
number of chains, which suggests that the losses through parallelization are limited to the computational
overhead of serialization.

Finally, I estimate a heterogeneous agents New Keynesian model, including the households preference
parameters. These parameters may be of particular relevance on their own as they govern the economy’s
steady state distribution of assets. This exercise was so far deemed impossible due to the large computational
costs associated with solving for the steady state distribution for each single likelihood evaluation of the
model, and is only enabled by the fact that DIME MCMC is trivial to parallelize. The estimation results
point towards a rather attenuated role of portfolio choice for macroeconomic dynamics, with the parameter
that determines the magnitude of the liquidity friction being identified significantly below its prior mean.
The degree of idiosyncratic income risk is also estimated to be below its prior mean, but still in the range of
values used in the literature.

Literature
The workhorse of Bayesian estimations in many economic applications is the random walk Metropolis

Hastings (RWMH) algorithm, which dates back to the seminal work of Metropolis et al. (1953) and Hastings
(1970). The shortcomings of RWMH are well documented (e.g. Chib and Ramamurthy, 2010; Herbst and
Schorfheide, 2015; Betancourt, 2017). The main issue is that convergence of RWMH to the posterior distri-
bution can be extremely slow, and sampling from ill-shaped or multimodal distributions is hardly possible in

7Sections 3 and 4 discuss the role of the number of chains and of the kernel mixing probability, and provide sane defaults for these
parameters.

8In the practical application of neural networks, bijectors are used to create proxy-posteriors which feature a more favorable geom-
etry.

9Documentation and downloads for the Python package can be found at https://github.com/gboehl/dime sampler. The standalone
version in Julia programming language is located at https://github.com/gboehl/DIMESampler.jl. The matlab implementation can be
found at https://github.com/gboehl/dime-mcmc-matlab.
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practice. To circumvent the first problem, numerical optimization routines are frequently used to find good
initialization values for RWMH. These routines are, however, often slow as well, and not very robust when
applied to more complicated posterior distributions. In particular, they tend to “get stuck” at local maxima.
Another problem with RWMH as well as with most numerical optimizers is that they are not parallelizable
due to their recursive nature. They therefore can not benefit from multi-core architectures, which is a major
drawback if the posterior density is computationally expensive to evaluate.

Well-known alternatives to RWMH include Gibbs and slice sampling (Geman and Geman, 1984; Damlen
et al., 1999), which perform better on high-dimensional distributions. They are, however, not robust to
multimodal distributions and do not perform well for burn-in and convergence to the high probability density
region. Also, these methods can not trivially be parallelized. A recent innovation from the econometrics
community is the sequential Monte Carlo (SMC) method introduced in Herbst and Schorfheide (2014). The
core idea is to run many RWMH chains in parallel interrupted by occasional resampling stages to ensure
that all chains converge to the high probability density region. In order to prevent convergence to local
optima, the authors develop a tempering scheme for SMC. By construction, this circumvents many of the
shortcomings of standard RWMH and, given the right choice of a tempering scheme, can also perform well
on multimodal distributions. SMC is also reported to work well on vector autoregression (VAR) models
(Bognanni and Herbst, 2018). The combination of tempering with RWMH chains may have the disadvantage
of relatively slow convergence. Additionally, the method has relatively many degrees of freedom in the
choice of metaparameters, which may determine overall performance. In contrast, the proposal density of
DIME is endogenous and, through the adaptation extensions, chains converge more quickly. As SMC, DIME
can straightforwardly be applied to VAR models.

Research in the field of astrophysics has recently made considerable progress on the frontier of Monte
Carlo sampling. Ensemble MCMC is conceptionally introduced by Goodman and Weare (2010). The au-
thors develop the idea of an ensemble of Markov chains which, based on the current state of all chains,
generates proposals inspired by the numerical optimization method of Nelder and Mead (1965). They show
that such sampler is affine invariant and “uniformly effective over all the convex bodies of a given dimension
regardless of their shape”, thereby significantly outperforming RWMH. The success of Ensemble MCMC
methods is accelerated by its excellent implementation in the open source packet emcee (Foreman-Mackey
et al., 2013).10 As shown in Section 4, Goodman and Weare (2010) indeed performs well in terms of
sampling efficiency but, at least for the models considered here, is rather slow to converge to the poste-
rior distribution. As acknowledged by the authors, the method by construction does not perform well for
multimodal distributions.

Vrugt et al. (2009) identify similar core problems with DE-MCMC (Ter Braak, 2006) as those that are
documented here, and propose a series of workarounds. As such, a common problem with multi-chain meth-
ods (like DE-MCMC) is that when considering interacting vectors, the entire ensemble has to be considered
as a whole, which increases n-fold the dimension of the target and may thus significantly impact conver-
gence. To address this problem, the authors add a scheme to resample DE-MCMC chains that are stuck,
which disburdens the problem of overly dispersed chains.11 However, the proposed heuristic for outlier
detection may not work well for all distributions in practice. To allow better support for multimodal distri-
butions the authors add DE-MCMC proposals for which the jump distance is unity. While this is a practical
workaround, it is likely to also slow down convergence, in particular for more challenging distributions.
A nice addition is a crossover step to decrease autocorrelation similar to the snooker move introduced in

10Emcee is implemented in the Python language and can be found at https://github.com/dfm/emcee. The package also provides
routines for efficient parallelization.

11The necessity to replace malperforming chains is an important issue that is also pointed out in ter Braak and Vrugt (2008).
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ter Braak and Vrugt (2008). An extension of DIME along these lines indeed increases convergence speed
and decreases autocorrelation times, but comes at the expense of not performing reliably on multimodal
distributions.

The recent rise of frameworks allowing for automatic differentiation (AD)12 has renewed interest in
the Hamiltonian Monte Carlo (HMC) method (Duane et al., 1987; Childers et al., 2022). HMC proposals
are based on the Jacobian of the posterior distribution. While these are normally expensive to evaluate
(e.g. via finite difference methods), AD provides computationally more efficient means for their calculation.
HMC clearly outperforms RWMH (and many other competitors) in terms of sampling efficiency and in its
capability to sample from more complex distributions. Drawbacks of HMC are that it does not necessary
provide fast burn-in and does not perform well for multimodal distributions if the modes are sufficiently
disconnected. HMC is also recursive by nature, which prohibits efficient parallelization. Importantly, HMC
requires the implementation of the likelihood function – and hence the complete structural model – in a
framework that allows for AD, which may require a major programming effort. Note that even with AD the
evaluation of the Jacobian is significant more costly than a standard likelihood evaluation. Section 6 briefly
touches upon a mixture sampler of DIME with the HMC method.13

The rest of the paper is structured as follows. Section 2 explains the basic DIME algorithm. Section 3
studies the performance of the algorithm on a high dimensional bimodal distribution. In Section 4 the
sampler is used on the Smets-Wouters model and in Section 5 it is applied to the estimation of a large-scale
HANK model. Section 6 concludes.

2 Mixture Ensemble MCMC Sampling

Let π(x) be the probability density of a target distribution with x ∈ Rn. In practice, π(x) is often the posterior
density π(x) = p(x|Y), which for given data Y and model x equals

p(x|Y) =
p(Y |x)p(x)

p(Y)
. (1)

p(Y |x) is the likelihood which, provided (x,Y), can be calculated using various Bayesian filtering techniques.
For many use cases the evaluation of p(Y |x) is computationally expensive. Let me assume that the prior p(x)
is specified such that it is straightforward to evaluate and to sample from, and

p(Y) =
∫

p(Y |x)p(x)dx (2)

is an unknown constant for given data Y . We then wish to draw a sufficiently large number of samples from
π in order to approximate some quantity

Eπ [h(x)] =
∫

h(x)π(x)dx ≈
1
N

∑
j

h(x j) (3)

with as few likelihood evaluations as possible.

12AD is e.g. available through the Python packages JAX or TensorFlow, or in the new Julia programming language. Boehl (2023)
contains a primer on AD and also shows how it can be used to solve heterogeneous agent models. A descendant of HMC is implemented
in the well-known STAN framework (Carpenter et al., 2017).

13Other than DIME, HMC requires that the parameter space is continuous (c.f. Neal et al., 2011), which is generally not the case for
DSGE models due to parameter combinations for which the model is indetermined or explosive.
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2.1 DIME vs. Random Walk Metropolis-Hastings
As a reference point, let me briefly sketch the classic random walk Metropolis-Hastings algorithm (Hast-

ings, 1970, RWMH). Start with a single parameter vector Xi at iteration i. A new replacement candidate is
generated by X̂i = Xi + εi where εi ∼ N(0,Σ) is called the RMWH proposal distribution, which is often
assumed to follow a multivariate normal distribution. The replacement candidate X̂i is accepted with the
Metropolis acceptance probability

P(Xi+1 = X̂h) = min
{

1,
π(X̂h)
π(Xh)

}
. (4)

If it is accepted, set Xi+1 = X̂i. Otherwise, set Xi+1 = Xi. A large literature discusses the properties of
RWMH, see e.g. Sokal (1997) or Roberts and Rosenthal (2001).

The practical performance of the algorithm crucially depends on the choice of the proposal distribution,
i.e. here on the covariance matrix Σ. This may be problematic since Σ has d(d+1)

2 degrees of freedom and
it is challenging to determine ex-ante which choice of Σ will maintain a high acceptance ratio while still
exploring the target distribution to a satisfactory degree. To maintain a sufficiently large acceptance ratio, Σ
is often scaled down to relatively small values. Consequently, RWMH is very slow to converge to the high
probability density region of the posterior (so-called burn-in or thermalization). To speed up computation,
RWMH is thus often used subsequent to a numerical optimization routine, which is supposed to provide
better starting values. As discussed above, such numerical optimization routines may also have severe
limitations.

DIME MCMC uses a different approach. It combines the characteristics of a broad class of global
optimizers with the properties of a MCMC sampler. The first feature is that the sampler draws proposals from
a local transition kernel – a replacement candidate that, locally for each individual chain, is created relative
to its previous state – as well as global proposals that are independent of the state of a single chain. Both
proposal kernels adapt to the state of the complete ensemble, explicitly for the global transition kernel and
implicitly for the local transition kernel. The coexistence of local and global transition kernel prevents single
chains from “getting stuck” at local maxima, speeds up convergence, and eases sampling from distributions
with two or more modes, even if these are fully separated. The second feature is the separation of proposal
space from parameter space, which ensures that any proposed replacement candidate has a positive prior
probability. This increases acceptance rates notably.

2.2 The Ensemble
In the spirit of Goodman and Weare (2010) consider an ensemble

Xi = (Xi,1, . . . , Xi,nc ), (5)

of nc individual chains Xi, j (or particles, in SMC terminology) indexed by j = 1, 2, . . . , nc running in parallel
at each iteration i. As in Herbst and Schorfheide (2014), initialize the ensemble with nc draws from the prior
distribution

X0
nc
∼ p(x). (6)

Initializing the ensemble with the prior distribution ensures that the full set of prior information on the rele-
vant parameter space is considered, independently of potential multimodality or possible discontinuities.14

14Goodman and Weare (2010) suggest to initialize the ensemble as a small ball around some initial value. However, if the posterior
is oddly shaped – e.g., if it is bimodal –, this bears the risk that the ensemble can not fully unfold. It may also be unclear which initial
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2.3 Strategy mixture

In each iteration and for each chain the sampler draws proposals that are mixtures of a local and a global
transition kernel.15 Let the global proposal kernel be selected with probability χ and, respectively, the local
transition kernel be chosen with probability 1 − χ.

Each iteration i of a DIME MCMC run then comprises:

1. Update the proposal distribution for the global transition kernel based on Xi.
2. To each chain i randomly assign a transition kernel Ki, j ∈ {G, L} with probabilities (χ, 1 − χ).
3. For each chain i, propose a replacement candidate vector X̂i, j based on the assigned transition kernel.
4. For each chain i calculate the factor weight ωi, j.
5. For each chain i, evaluate the posterior density π(X̂i, j) of the candidate.
6. For each chain i, generate Xi+1, j by accepting X̂i, j with a Metropolis acceptance probability of

P(Xi+1, j = X̂i, j) = min
1,

π(X̂i, j)
π(Xi, j)

ωi, j

 , i = 1, 2, . . . , nc, (7)

or reject X̂i, j and set Xi+1, j = Xi, j with probability

P(Xi+1, j = Xi, j) = 1 − P(Xi+1, j = X̂i, j). (8)

The theoretical properties of the mixture of two or more kernels are fairly well understood. Proposition 1
summarizes the central result on the ergodicity and convergence of kernel mixtures.

Proposition 1. Suppose two transition kernels P1 and P2 have invariant distribution π and P1 is uniformly
ergodic. Then for 0 < χ < 1 the kernel χP1 + (1 − χ)P2 is uniformly ergodic with invariant distribution π.

Proof. The proof is provided by Tierney (1994) following Propositions 3 and 4.
The remainder of this section goes through the central components – local and global kernel, and factor

weights – in detail. Section 4 investigates the question of the optimal number of chains nc contra the number
of iterations in detail. As documented there, a value of nc ∈ (4n, 6n) is often a good choice, where larger
ensembles help to tackle more irregular posterior distributions, as e.g. bimodal distributions, but fewer
chains may speed up burn-in.

2.4 Local transition kernel

The local kernel is local in the sense that for each chain j to which the local transition kernel is assigned,
the candidate is proposed relative to the current state Xi, j of j. Yet, the relative increment is based on the
state of the full ensemble. At its core, the random-walk proposal distribution of RWMH is replaced with a
proposal that follows the differential evolution concept of Ter Braak (2006).

More formally, for each iteration i and each chain j : Ki, j = L draw two reference chains {k, l} ∈
{1, 2, . . . , nc} with k , j and l , k ∧ l , j. Take the difference of the state of these two chains as a

value to choose, in particular if we seek to avoid nonlinear optimization routines.
15See Tierney (1994) for a theoretical discussion of mixture kernels. An alternative approach would be to draw the transition kernel

not per chain and iteration but for all chains per iteration.
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displacement vector which is added to the state Xi, j of chain j. The replacement candidate for chain Xi, j is
then X̂i, j = fb

(
X̂i, j

)
with

X̂i, j = Xi, j + γ(Xi,k − Xi,l) + ϵi, j, ∀ j ∈
{
j : Ki, j = L

}
(9)

where γ is a scaling factor and ϵi, j is some (very) small noise.
As the ensemble evolves over time, proposal steps naturally adapt direction and scale of the current

estimate of the posterior distribution. When the ensemble converges to the posterior distribution, so does
the proposal distribution. Note that probability to draw the displacement vector Xi,k − Xi,l is exactly equal to
drawing the displacement vector Xi,l−Xi,k. Denoting the respective Metropolis-Hastings proposal distribution
by g it thus holds that

g
(
X̂i, j|Xi, j

)
= g

(
Xi, j|X̂i, j

)
(10)

and Equation (8) implies detailed balance for ωi, j = 1.16

Proposition 2. The local transition kernel L yields an ensemble of Markov chains Xi =
{
Xi,1, . . . Xi,nc

}
with

π as the unique stationary distribution of each Xi, j ∈ Xi.

Proof. The local transition kernel concurs with the differential evolution kernel introduced in Ter Braak
(2006). The proof of ergodicity to π is provided in ter Braak and Vrugt (2008).17 Intuitively, given the
stationary distribution, the proposal distribution is the γ-scaled difference of two draws from the posterior
distribution, which by itself is a stationary and symmetric distribution. This result on X applies one-to-one
to the stationary distribution of X.

From the intuition of the proof it also follows that, if π(x) follows a Gaussian distribution, after con-
vergence each individual proposal X̂i, j is of the same form as an RWMH proposal. This can be verified
by acknowledging that, if π(x) is Gaussian, each draw Xi, j is also Gaussian, and the difference between
two chains hence also follows a Gaussian distribution. Under the assumption that the target distribution is
near-Gaussian, the optimal choice for the scale γ is γ = 2.38

√
2n

from the RWMH literature (e.g. Roberts and
Rosenthal, 2001), which is expected to give an acceptance probability of 23% for high-dimensional posteri-
ors, i.e. for large n. Throughout this paper I set γ to this default value. The additional ϵi, j follows a normal
distribution with mean zero and a standard deviation of 1e−5.

2.5 Global proposal kernel
In contrast to the local transition kernel, the global proposal is global in so far as candidate proposals

only depend on the global state of the ensemble (and its history), but not directly on the current state of a
single chain.

For each chain j in iteration i with Ki, j = G the displacement vector is drawn from an independent
but adaptive proposal distribution. The distribution adapts such that it roughly corresponds to the current
estimate of the posterior. A natural choice for such proposal distribution is the multivariate t-distribution with
fixed degrees of freedom ν. This distribution is especially useful because for ν > 2 it can be parameterized
over its mean and covariance (µi,Σi), and exhibits fat tails.18 Thus, let

X̂i, j ∼ tν (µi,Σi) , (11)

16Detailed balance is a central feature of Markov chains which guarantees that each chain satisfies reversibility.
17As pointed out in ter Braak and Vrugt (2008), the original proof in Ter Braak (2006) contained an error.
18The benefits of a fat tailed proposal distribution for adaptive independence MCMC is also pointed out by Holden et al. (2009).
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and, to again satisfy detailed balance in (8), set

ωi, j =
f t(Xi, j)

f t(X̂i, j)
, (12)

where f t is the density function of the multivariate t-distribution as defined in (14).
In each iteration i the ensemble Xi is used to update the parameters (µi,Σi) with weights proportional to

the average posterior density of Xi. This choice of weights ensures flexibility of the proposal distribution
during burn-in but also stationarity after convergence. More formally, define the absolute weight of the
ensemble Xi in iteration i on the proposal distribution as

wi = ai

nc∑
j

π(Xi, j), (13)

where ai =
1
nc

∑nc
j 1{Xi, j,X̂i−1, j}

(
Xi, j

)
is the mean acceptance ratio in i. Let Wi be the cumulative weight in i

initialized with W0 = 0. Denote by (µX
i , ΣX

i ) the sample mean and sample covariance matrix of the current
ensemble Xi. Then for each chain j : Ki, j = G the proposal is given by

X̂i, j ∼ tν

(
µi,

ν − 2
ν
Σi

)
, (14)

with

µi =

(
Wi−1

Wi

)
µi−1 +

(
wi

Wi

)
µX

i , (15)

Σi =

(
Wi−1

Wi

)
Σi−1 +

(
wi

Wi

)
ΣX

i , (16)

Wi =Wi−1 + wi. (17)

Note that the proposal density is (almost) independent of chain j.
The weighted updating of draws from each new iteration has the strong advantage that during burn-in,

newer updates have more weight than old ones and the proposal distribution adapts quickly to the current
shape of the estimated target distribution. However, once the chains converge we have, for sufficiently large
nc, that

∑nc
j π(Xi, j) ≈

∑nc
j π(Xi+s, j) for s = 1, 2, . . . and more recent draws have decaying weights.19

Proposition 3. The Global transition kernel G yields an ensemble of Markov chains Xi =
{
Xi,1, . . . Xi,nc

}
with π as the unique stationary distribution of each Xi, j ∈ Xi.

Proof. See Roberts and Rosenthal (2007) for a detailed proof of adaptive independence Metropolis Hastings.
Since weights on most recent iterations are decaying, the procedure converges to the specification in Haario
et al. (2001) and enjoys the same convergence properties therein.

A natural choice for the degrees of freedom ν of the multivariate t distribution is to pick rather low
values, which imply fatter tails of the proposal distribution. All results of this paper are rather insensitive

19Note that it is not an actual requirement that the cumulative density is approximately equal across ensembles. Σi converges even if∑nc
j π(Xi, j) varies a lot as long as it is stationary.
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to the choice of ν, and throughout the following sections I use ν = 10. While the above specification of
the mean/covariance updating could be tweaked with a number of additional parameters (e.g. a tempering
scheme for the probability weights), this is unnecessary in practice. If a researcher wishes to replace less
chains per iteration, it is sufficient to decrease the probability χ for the global transition kernel and vice versa.
This leaves the specification of the global transition kernel essentially parameter free, and in total requires
the researcher to only specify nc and χ as the necessary parameters for DIME MCMC. Throughout this
paper I set χ = 0.1, which provides a good compromise between fast burn-in and robustness for multimodal
distributions. As discussed in section 4 a value of nc between 4n and 6n often delivers good performance.

2.6 Optional: Proposal space vs. parameter space
The prior distribution p(x) often has bounded support. Naturally, replacement candidates beyond these

bounds are always rejected. This is in particular problematic for medium- and large-scale DSGE models as
these frequently feature exogenous AR(1) processes with roots close to a unity. Since the prior of these roots
is bounded by (0, 1), estimates close to unit roots will often cause poor sampling performance because any
proposal with values of the AR-coefficient larger one will be rejected. A model with several AR(1) processes
close to unit roots will hence feature a rather low acceptance fraction during MCMC sampling.

To circumvent this problem, the above method can be extended by defining the parameter space Z : x ∈
Z⇔ p(x) > 0 to be the space of all parameter combinations for which the prior density is positive. Redefine
X from above as the proposal space X = Rn which is unbounded, and let fb be a bijective map

fb : Rn → Z (18)

such that for any x ∈ Z there exists a unique z ∈ Rn for which fb(z) = x. fb then is always uniquely invertible,
and by definition, fb maps within the bounds of the prior distribution whereas its domain is unbounded. fb
ensures that every sample has a positive prior density.

While Zi holds the ensemble in parameter space, let

Xi = (Xi,1, . . . , Xi,nc ) = ( f −1
b (Xi,1), . . . , f −1

b (Xi,nc )) (19)

be its complementary representation in proposal space.
A straightforward choice for the functional form of the bijective transform fb is to chose xq = exp(zq)+b

for priors that are bounded below by b (e.g. following a gamma and inverse gamma distribution), and the

logistic function xq =
b̄−b

1+exp(−zq) + b for priors with two-sided bounds (b, b̄) (e.g. the beta distribution).20

While the bijective mapping is used throughout this paper, all presented results also hold without bijection.
This comes at the cost of moderately larger rejection rates and, thus, slightly slower rates of convergence.

3 A high-dimensional bimodal toy distribution

This section studies the performance of DIME MCMC on a distribution with known properties. I focus
on a class of high dimensional bimodal distributions where the two modes may be disconnected and can
have different density masses. Such distributions are known to be challenging for MCMC samplers: while
it can shown theoretically that single Monte Carlo methods such as RWMH will converge to the posterior

20Another natural choice would be xq = Φ
−1

(
Fq

(
zq

))
, where Φ−1 is the quantile function of the standard normal distribution and Fq

is the CDF of prior q. This effectively transforms the prior to a multivariate Gaussian, which may be beneficial for the approximation
of the proposal distribution of the global transition kernel.
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distribution almost surely if the number of iterations goes to infinity, it is well known that they often fail to
do so in finite time. Rather, they tend to “get stuck” in one of the modes, thereby misrepresenting the true
posterior. This makes this exercise a veritable challenge for DIME.

The probability density of the random variable M is given by the multivariate Gaussian mixture

πM(x) = λP(X = x) + (1 − λ)P(Y = x) (20)

where X ∼ Nn(µX , σIn) and Y ∼ Nn(µY , σIn) are both n-dimensional Gaussian distributions with the same
covariance, which is the identity matrix scaled by the scalar σ > 0. λ ∈ (0, 1) is a weighting parameter
and µX = (m/2, 0, · · · , 0)′ and µY = (−m/2, 0, · · · , 0)′ are both vectors of zeroes apart from the first entries,
which are m/2 and −m/2 respectively. The distribution of M is then bimodal whenever m , 0, and the
distance between the two modes is given by |m|. When keeping σ fix, increasing m complicates Monte Carlo
sampling because the modes are less connected. Corresponding with the typical size of a target distribution
when estimating medium-scale DSGE models, let M be in n = 35 dimensions.21

Figure 1 illustrates this exercise graphically by marginalizing over the first dimension. The shaded areas
mark the 2.5%-percentile and the median of the first dimension. Each ensemble is initialized with a sample
from Nn(0n,

√
2In). The initial ensemble is hence distributed across the domain of M, with relatively more

chains closer to the origin (dashed blue line in Figure 1). Calculations are done for σ = 0.05 and distances
of m ∈ {1, 2, 3} (the columns of figure 1).22 The first row shows the target distribution for λ = 0.5 where both
modes peak at the same maximum density. For m = 1 both modes are connected, meaning that for any point
between the modes the density is still reasonably large (that is, larger than 0.1 for the cases considered here).
For m = 2 the trough between the models is relatively short in distance, but the minimum density is already
close to zero. The gap for which the density is zero again increases considerably when setting m = 3, for
which the modes are fully disconnected. Here, the typical set is clearly disjunct and thus difficult to traverse.
The challenge for MCMC sampling lies in the fact that the chains must be able to bridge this gap, which for
conventional samplers is unlikely once the density in the intermediate region is close to zero.

For each of the nine exercises, I conduct 100 batches of 210 chains each (correspondingly, nc = 6n), let
each batch run for 2000 iterations with χ = 0.1, and then calculate the 2.5%-percentile and the median over
the first dimension. Table 1 presents the root mean squared errors (RMSE) of these target measures over all
batches. As the table suggests, DIME MCMC performs very well over all nine exercises. Even when M is
fully disconnected (m = 3), the sampling error only increases marginally. The only exception is the estimate
of the median for the first row where λ = 0.5. This finding can, however, be attributed to the peculiar effect
that for m = 2 and m = 3 the posterior density in the gap between the two modes is almost zero because both
modes have the exact same density masses. Correspondingly, this region contains no chains and a precise
quantification of the median is impossible unless we let the number of iterations go to infinity.

For the simulations in the second and third row of Figure 1 and Table 1 λ is set to 0.33 and 0.25,
respectively. This example is more challenging because some chains must jump between the modes in order
to correctly reflect the different density masses of the modes. In practice any single-particle sampler is likely
to “get stuck” in either of the mode, thereby ultimately misrepresents the posterior distribution. Yet, also for
this example RMSEs are very small and acceptance ratios are in the desired range between 20-25%. This
neat performance is granted by the global transition kernel, which allows to reshuffle chains between the two
modes. Consequently, DIME performs less good if the probability of drawing the global transition kernel χ

21The posterior of the model of Smets and Wouters (2007) has 36 dimensions while the posterior of the HANK model estimated in
Section 5 has 31 dimensions.

22These values are chosen to demonstrate the frontier of what is possible with DIME, without additional adjustments of the algorithm.
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Figure 1: A 35 dimensional multivariate Gaussian mixture, marginalized over the first dimension (orange line). The dashed line depicts
the initialization distribution of the ensemble. The frontier between the dark orange and light orange shaded area marks the 2.5%-
percentile and the frontier between the light shaded area and no shade marks the median of the distribution.

is set larger than 20%. In that case, too many chains are reshuffled too early, thereby causing estimates of the
global proposal distribution to ignore the second mode. This corroborates the previous recommendation of
setting χ = 0.1 for black-box distributions. For this setup, DIME MCMC seems to be able to reliably sample
from the typical set of high-dimensional and bimodal distributions, even if the modes are fully disconnected
and the typical set is thus discontinuous.
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m = 1 m = 2 m = 3
2.5% HDI median 2.5% HDI median 2.5% HDI median

λ = 0.5 0.00827 0.08253 0.00960 0.58256 0.01239 1.08592
λ = 0.33 0.00946 0.01337 0.01004 0.01709 0.01453 0.02222
λ = 0.25 0.01253 0.00944 0.01308 0.01148 0.01897 0.01592

Table 1: RMSEs of the estimated 2.5%-percentile and the median of the first dimension of the target distributions. Results obtained
from 100 batches.

4 The Smets-Wouters model

A common benchmark case for the Bayesian estimation of DSGE models is the work of Smets and
Wouters (2007, henceforth SW), who pioneered the use of Bayesian methods for bringing medium-scale
DSGE models to the data. I use this prominent reference in three exercises. First, I asses whether DIME
MCMC is able to recover the posterior distribution from the original paper. Clearly, this can be seen as a
minimum requirement for any sampler in oder to be of interest for macroeconometricians. Secondly, I use
the model of SW to compare DIME with the perfomance of the local and global transition kernel alone,
as well as with another popular ensemble MCMC sampler from the literature. Lastly, I use their model to
numerically evaluate the trade-off of more chains versus longer chains.

For each of the exercises exactly the same model specification, priors, data and data treatment as in the
original paper are used. All estimations are done on a workstation with 40 Intel Xeon CPUs with 3.1GHz
each and a total of 32GB RAM. I use the package pydsge for parsing and solving the linear model, and to
calculate the likelihood using the standard Kalman filter.23

4.1 Comparison with the original estimates

To reproduce the estimation from SW I let an ensemble of 200 chains run for 3000 iterations, of which
500 are kept as the posterior. The original estimation relies on 250.000 samples (of which 50.000 are dis-
carded) obtained using RWMH after running an optimization procedure from pre-optimized starting values.
Table A.4 in Appendix A shows summary statistics over the posterior distribution of the estimation together
with posterior statistics from SW. Overall, the DIME MCMC estimates and the posterior values from the
original estimation of SW are very closely aligned. Notable differences are the estimate of the standard
deviation of the risk premium shock, σu, which is substantially larger than the SW estimate, as well as in
the estimate of the steady state labor supply l. Judging from the standard deviation of the latter estimate,
the parameter seems not well identified. In summary, the estimates indicates that the DIME MCMC can
fully recover the original values of SW. The table also shows the marginals over the proposal distribution of
the global transition kernel which, in terms of mean and standard deviation and as expected, is very closely
aligned to the posterior distribution.

4.2 Comparison of different Ensemble MCMC samplers

Turn now to the comparison of the performance of DIME MCMC with its individual components –
the local and global transition kernel – taken alone, as well as the “Stretch” move of Goodman and Weare
(2010). I let each sampler run ten times over different random seeds. For each sampler and seed I chose

23Pydsge is a toolbox to solve, filter, and estimate DSGE models in Python language, which is presented in Boehl and Strobel (2022a).
The package is available in the official Python repositories and developed and maintained at GitHub: https://github.com/gboehl/pydsge.
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the same initialization and, again, let 200 chains run for 3000 periods. To allow for fair comparison the
bijective mapping between proposal and parameter space is used for all samplers. Figure 2 plots the log-
density of each single chain over time. In each panel, the dashed line marks the mode i.e., the maximum
posterior density value. The different colors correspond each to a different ensemble run. The top-left panel
plots the batches using the DIME sampler. Chains converge quickly towards the high density region of the
posterior, reaching the 68% set of the posterior roughly in period 300 and the 97.5% set in about iteration
500. Although convergence is difficult to asses, it seems as if all DIME chains across all ensembles have
converged to the posterior roughly at iteration 700. Throughout the convergence period the single chains
remain relatively close to each other, both within and across ensembles.

Figure 2: Using different ensemble MCMC methods to estimate the model of Smets and Wouters (2007). The “DE-MCMC” method
concurrs with the local transition kernel. The panels show each using a different Ensemble MCMC method, the traces of the log-
likelihood of several ensembles over time, Each colors represent a different ensemble with different random seed. For each ensemble
all individual chains are plotted. For all panels the same scaling is used.

The panel at the top-right plots the performance of the “Stretch” move of Goodman and Weare (2010).
This proposal kernel is quite popular in the field of astrophysics. Across batches, initial convergence of
the ensembles is relatively rapid, but convergence then slows down. The 68% and 97.5% sets are reached
between iterations 1500 and 2000 and after 2250, respectively. Correspondingly, the chains do not converge
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to the posterior before iteration 2500. Additionally, convergence behavior differs slightly across batches.
The bottom-left panel in Figure 2 shows ensembles following the local transition kernel, which concurs

with the differential evolution MCMC (DE-MCMC) method of Ter Braak (2006) in the implementation of
Foreman-Mackey et al. (2013). The graphic suggests that burn-in for DE-MCMC is slow and the ensemble
does not converge to the prior distribution within the given 3000 iterations. An apparent problem seems to
be that dispersion in log-density across chains in each ensemble is very large. The likely reason is that each
chain moves ex-ante independently, i.e. state of the complete ensemble is only used for relative repositioning
of each chain. When ensemble dispersion is high, the quality of replacement proposals deteriorates and
convergence slows down even further, thereby causing single chains to converge very slowly.

The bottom-right panel plots a batch of ensembles following only the global transition kernel, i.e. without
mixing with the local transition kernel. As apparent from the figure, the adaptive independence Metropolis-
Hastings approach alone performs quite badly and exhibits slow convergence. To understand this, note that
most proposals lie close to the current maximum likelihood value. In the absence of mixing with other
kernels, the proposal distribution quickly shrinks towards a narrow neighborhood around this maximum.
Consequently, the global kernel only generates proposals in the direct vicinity of the maximum and does
not sufficiently explore the global domain. Correspondingly, performance during burn-in varies much over
random seeds.

DIME MCMC is a mixture kernel of DE-MCMC and the global transition kernel. Figure 2 clearly illus-
trates their individual weaknesses. The DE-MCMC ensemble is overdispersed, which causes unfavorable
individual proposals and, in turn, slow converge. In contrast, the ensemble of the global transition kernel
converges to a narrow ball because chains with a higher probability density have a larger weight in the pro-
posal distribution. Thus, candidate proposals will lie in the immediate proximity of the current ensemble,
again causing slow convergence. The key to the performance of DIME is that both kernels are strongly com-
plementary and these individual weaknesses chancel out: when mixing the two kernels, the “fairly good”
proposals from the global transition kernel are sufficient to reshuffle chains that would otherwise (i.e. with
DE-MCMC alone) be stuck in regions with lower probability density.24 This reshuffling is efficient to de-
crease the dispersion of the ensemble and, consequently, the proposals of the local transition kernel improve,
which helps to explore the broader neighborhood of the current state of the ensemble.

4.3 The number of chains nc

Next, let me benchmark the sensitivity of the estimation results with respect to the number of chains
nc. Figure 3 illustrates burn-in speed and convergence dynamics in terms of the number of total function
evaluations. For the chosen range of nc ∈ (4n, 6n) it seems that no setup emerges which is to be strongly
preferred. I start with nc = 2n, which is the minimum number of chains suggested by Foreman-Mackey
et al. (2013). As depicted in top-left panel, convergence is slower than for a larger number of chains and
the course of the different ensembles shows larger variation. For more chains (nc = 4n, top-right panel)
convergence is faster, with no significant difference to nc = 6n in the bottom-left panel. For larger ensembles
(nc = 8n, bottom-right) convergence per function iteration is again marginally slower whereas individual
ensembles are almost indistinguishable.

This exercise reveals a mild trade-off between the number of iterations and the quality of the proposal
candidates. For just a few chains per ensemble, each iteration requires only few function evaluations. How-
ever, the relatively small number of chains produces less favorable replacement proposals, which implies

24Following a similar intuition, Vrugt et al. (2009) use the inter-quartile range to discover potential outlier chains, which are then
replaced with the current best chain.
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Figure 3: Using DIME MCMC to estimate the model of Smets and Wouters (2007). Each panel shows the course of the log-likelihood
of several ensembles over time, using different numbers nc of chains. Each colors represent a different ensemble with different random
seed. For each ensemble all individual chains are plotted. The scaling of all panels is the same.

that more iterations are needed until convergence. When, in contrast, ensembles are large, each iteration
is relatively costly and fewer iterations can be done for a given number of function evaluations. However,
for a large range of nc between 4n and 6n a larger number of chains approximately compensates one-to-one
for fewer iterations. Importantly, this suggests that estimations can be scaled very well when parallelizing
chains on computers with a larger number of processing units. An increase in the number of chains does
always require less chain iterations. Even if this relationship would not be one-to-one, this implies that it is
advisable to use at least as many chains as numbers of processors.

Appendix B provides Gelman and Rubin (1992) statistics over the number of chains. The Gelman-
Rubin statistic is a measure of convergence. The results substantiate the hypothesis that the optimal number
of chains lie between 4n and 6n, with a lower number of iterations (i.e., a larger number of chains) causing
higher Gelman-Rubin coefficients. This indicates that it is more important to run many iterations than to run
a large number of chains. However, average integrated autocorrelation times (Sokal, 1997) across chains,
parameters and different ensemble sizes are relatively constant around 40. This in turn suggests again that
the ensemble size does not have a major influence on sampling quality.
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Overall I suggest to chose nc to be a multiple of the number of available processors which lies in in the
range 5n and 6n, and to set χ = 10%. It is advisable to monitor the trace plot of the likelihood function (e.g.
as in Figure 3) and the histogram of the posterior. For very rugged or mulimodal distributions the number
of chains should be increased. In such cases it is additionally expedient to decrease χ to prevent chains
from getting reshuffled too early. In contrast, if for some reason the posterior is expected to be rather near-
Gaussian, a larger value of χ can be chosen, which will decrease autocorrelation times and hence requires
fewer ensemble iterations during the sampling stage, i.e. after burn-in.

5 Full estimation of HANK

To explore the full potential of DIME MCMC I use the sampler to estimate a Heterogeneous-Agent New
Keynesian (HANK) model with portfolio choice and including all the features of a conventional medium-
scale DSGE model. The central novelty relative to the literature is that I include the households’ preference
parameters in the set of estimated parameters, which increases the complexity of the calculations signifi-
cantly.

HANK models are a relatively new class of models (see, e.g., Gornemann et al. (2012) and Kaplan
et al. (2018a)) that combine the New Keynesian paradigm with household heterogeneity and incomplete
financial markets. This allows, for example, to study the impact of economic inequality on macroeconomic
aggregates and vice versa. While the estimation of HANK models is pioneered by Winberry (2018), Bayer
et al. (2020, henceforth BBL) and Auclert et al. (2021), these papers do not estimate the parameters of
households’ preferences that govern the households’ optimization problem. The reason for excluding these
parameters is that they alter the model’s steady state, which would then have to be re-evaluated for every
posterior draw. As the re-evaluation of the steady state involves finding a stationary distribution such that
all equilibrium conditions are satisfied, this comes at large computational costs. Consequently, BBL and
Auclert et al. (2021) both opt to calibrate all parameters which affect the model’s steady state and focus on
estimating the remaining parameters.

However, the households’ preference parameters have the potential to form central attributes of the er-
godic distribution of assets and income, and may thus qualitatively and quantitatively determine the magni-
tude of the novel channels exposed by this class of models. Hence, these parameters could potentially affect
the macroeconomic dynamics of this class of models fundamentally. Since at the same time, their inclusion
in the estimation is computationally expensive – finding the steady state and the stationary distribution takes
about 10 seconds for the implementation considered here – it is a perfect use case for the DIME sampler.

5.1 Model and Data

The model is the fusion of a two-asset HANK model with a medium-scale DSGE model. The HANK
core shares many features with the models of Auclert et al. (2021) and Kaplan et al. (2018b). This core
is extended by several frictions in the spirit of Smets and Wouters (2007), which, among other features,
allow for additional endogenous transmission of aggregate shocks over time.25 To ease comparison with the
DSGE literature I use the priors of Smets and Wouters (2007). Accordingly, some of the functional forms
(e.g. capital adjustment costs and Calvo pricing) are adapted from there. In the following I discuss only
those equations that deviate from Auclert et al. (2021) and refer the interested reader to Appendix C for
further details on the model.

25It is well known that such endogenous persistence is a crucial feature to replicate the hump-shaped empirical responses that are
reported in the VAR literature.
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Households supply labor and have access to a liquid and an illiquid asset. Importantly, they face bor-
rowing constraints on both assets, and adjustment costs on the illiquid asset. Firms accumulate capital,
and staggered price setting results in a conventional Phillips curve. Adding ad-hoc price indexation with
parameter ιp, inflation πt is determined by

πt − π̄ =
β

1 + βιp
(Etπt+1 − π̄) +

ιp

1 + βιp
(πt−1 − π̄) + κp

(
M̂Ct −

1
µ

)
+ ϵp,t, (21)

where π̄ is the steady state inflation. ϵp,t is assumed to follow an AR(1) process around its zero mean and the
slope of the Phillips curve is given by κp =

1−ζpβ

1+ιpβ
1−ζp

ζp
. Labor unions set nominal wages which are also subject

to staggered pricing, giving rise to a Phillips curve for wages. Adding wage indexation with parameter ιw,
this yields

πw
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(22)

where ϵw,t as well follows an AR(1) process and κw =
1−ζwβ
1+ιwβ

1−ζw
ζw

. Monetary policy sets the nominal interest
rate rt following a conventional monetary policy rule,

rn
t − rn = ρ

(
rn

t−1 − rn
)
+ (1 − ρ)

[
ϕπ (πt − π̄) + ϕy∆ ln Yt

]
+ ϵr,t, (23)

with ϵr,t as an exogenous AR(1) process representing monetary policy surprises. Note that in order to remain
agnostic about the central bank’s welfare objective, a traditional measure of output gap is absent in this
equation. The setup of capital adjustment costs is as in Smets and Wouters (2007) and yields the following
expressions for Tobin’s Q and the firm’s investment decisions:

Rt+1qt = (1 − δ)Etqt+1 + αEt
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, (24)
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where Rt is the gross real interest rate on liquid assets, S (x) = 1
2S ′′ (x − 1)2 is a quadratic adjustment cost

function, and ϵi,t is an exogenous AR(1) process on the marginal productivity of investment. Finally, labor
income taxation is progressive with parameter Ξ such that after-tax labor income y jt is given by

y jt = yp
jt

1−Ξ
+

∫
p(e jt)

(
yp

jt − yp
jt

1−Ξ)
, (26)

with pretax income yp
jt = (1 − τt)wtNteit.

For the estimation I use a subset of the data used in Boehl et al. (forthcoming) which amounts to a
relatively conventional setup for medium scale models: growth rates of consumption, investment, output
and wages, together with inflation, labor hours and the federal funds rate. The data is at quarterly frequency
and ranges from 1983:I to 2008:IV. As in Justiniano et al. (2010), investment and consumption time series
are adjusted such that investment also includes durables consumption. In the model, those seven observables
are matched by seven economic shocks, which are all defined in percentage deviations from the steady state:
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the two markup shocks, the monetary policy shock, a government spending shock on Gt, a discount factor
shock on βt and the shock on the marginal efficiency of investment, ϵi,t. Further details can be found in
Appendix D.

5.2 Estimation methodology

Model solution and likelihood inference is done following the methodology introduced in Auclert et al.
(2021).26 In brief, let yt be the time t vector of model variables (including disaggregated variables) and let
the sequence of first-order conditions and market clearing conditions, up to some distant point T periods in
the future, be

F = { f (yt−1, yt, Etyt+1; x)}Tt=0 = 0⃗, (27)

which depends on the parameter vector x. Denote by Yt ⊂ yt only the aggregated variables and by Zt ⊂

yt those variables that are purely exogenous. The authors propose a novel and computationally efficient
procedure of finding the steady state Jacobian matrix of F with respect to {Yt}

T
t=0 and {Zt}

T
t=0. These sequence-

space Jacobians can then be used to calculate impulse responses to aggregate shocks up to a first order
approximation. Notably, this works for the broad class of models for which it is not required to explicitly
keep track of any of the disaggregated distribution variables on a global domain. Simulations are based on
the sequence space rather than, as in BBL, the state space. The authors show that the first-order sequence
space representation can be used directly for likelihood inference, without the need for using the Kalman
filter (which would require a state space representation). In their application, the authors are able to re-use
(parts of) the Jacobians depending on the types of parameters to be estimated. In contrast, in my application
each Jacobian has to be calculated from scratch due to the re-evaluation of the steady state for each parameter
draw.

In a deterministic setup, the steady state ȳ must satisfy

f (ȳ, ȳ, ȳ; x) = 0⃗. (28)

Given a guess for the steady state values of aggregated variables Ȳ , the stationary distribution of idiosyncratic
variables can be found by solving for the stationary decision rules via backward iteration, and solving for
the stationary distribution via forward iteration. Hence, there exists a known mapping Ȳ → ȳ, and finding
Ȳ can be done using conventional root finding methods. Often, the size of this root finding problem can
further be reduced to only searching a subset K̄ ⊂ Ȳ since Ȳ can be expressed in terms of this subset. Still,
finding ȳ is relatively time consuming and must be repeated for any parameter draw x if the households’
micro parameters change.27

5.3 Estimation results

As usual, some parameters are fixed prior to the estimation. These parameters, most of which configure
the technical setup of the estimation (e.g. the number of grid points), can be found in table C.6 in Appendix
C. All other parameters are estimated using the priors presented in the first three columns in tables 2 and 3,

26The authors provide their set of methods as a Python toolbox maintained at GitHub: https://github.com/shade-econ/sequence-
jacobian.

27For any numerical root finding method a good initial guess is crucial. This also holds for finding the steady state. For bad initial
guesses, the root search may either diverge, crash due to numerical errors when solving for the stationary distribution, or simply take up
a very long time. This is problematic because it also prohibits the calculation of the likelihood for cases in which a likelihood actually
exists. In practice, for every draw I use the steady state values for the prior mean as the initial guess, which causes about 2/3 of all
parameter vectors sampled from the prior distribution to be accepted.
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Figure 4: Posterior histogram and prior distribution (left side, blue and orange) of selected households’ parameters with trace plots of
the ensemble over iterations (right side). The part colored in red is discarded as burn-in.

which follow the specification of Smets and Wouters (2007). Exceptions are the portfolio adjustment cost
parameter χ0, tax progressively parameter Ξ, and the standard deviation of the AR(1) process for idiosyn-
cratic labor productivity σe, which are specific to the HANK model. For these parameters I opt for generally
flat priors. I let the prior mean of σe be 0.92 as in Auclert et al. (2021) and, for the same reason, set the prior
mean of χ0 to 0.25.

For the estimation I run a DIME MCMC ensemble with nc = 192 chains for 2000 iterations. The last
1000 iterations are kept as a sample from the posterior. The number of chains is the number of available
CPUs (48) times 4 and, with nc ≈ 5.33n, lies in the range recommended in the previous section. The ensem-
ble converges to the high-density region of the posterior after about 800 iterations and the full estimation
takes 84 hours on the machine with 48 cores. Respectively, on a machine with 192 cores each chain would
have a dedicated processor and the estimation would take less then a day (about 21h). On a machine with
even more cores the number of chains should increase accordingly, which would still reduce the overall pro-
cessing time almost one-to-one (see section 4). The figures F.6 and F.7 to F.11 in Appendix F graphically
illustrate and document the convergence of the ensemble. Tables 2 and 3 show summary statistics of the
posterior distribution of model parameters.
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Prior Posterior
distribution mean std. mean std. mode

σ intertemporal elasticity of substitution normal 1.500 0.375 2.043 0.202 1.850
φ Frisch elasticity normal 2.000 0.750 1.738 0.562 1.805
ζp Calvo parameter for price setting beta 0.500 0.100 0.590 0.050 0.592
ζw Calvo parameter of wage setting beta 0.500 0.100 0.416 0.069 0.413
ιp price inertia beta 0.500 0.150 0.331 0.129 0.335
ιw wage inertia beta 0.500 0.150 0.322 0.147 0.303
S ′′ derivative capital adjustment costs gamma 4.000 2.000 2.279 0.702 1.725
ϕπ monetary policy coefficient inflation gamma 1.500 0.250 2.322 0.219 2.198
ϕy monetary policy coefficient output gamma 0.125 0.050 0.222 0.063 0.205
ρ monetary policy persistence beta 0.750 0.100 0.652 0.052 0.680
ȳ trend output normal 0.400 0.100 0.438 0.026 0.434
n̄ steady state labor hours normal 0.000 2.000 -0.047 1.961 1.469
π∗ inflation target gamma 0.625 0.100 0.596 0.051 0.624
i∗ steady state nominal interest rate gamma 1.250 0.100 1.239 0.089 1.259

χ0 portfolio adjustment costs (scale) gamma 0.250 0.150 0.153 0.118 0.094
Ξ tax progressivity beta 0.200 0.100 0.089 0.059 0.071
σe standard deviation of labor productivity normal 0.920 0.400 0.860 0.185 1.064

Table 2: Estimation results for HANK: model parameters

Figure 5 shows impulse response functions to a monetary policy and a TFP shock sampled from the
posterior of the estimated model. These impulse responses look rather conventional: output increases per-
sistently as the consequence of a TFP shock, while the fall in inflation is rather transitory. The effect of
monetary policy shocks is rather short lived and stimulates output and inflation alike.

This paper focusses on the performance of the DIME sampler instead of the economic dynamics of the
estimated HANK model. For this reason I deem an in-debt analysis of the economic implications of the
estimated model out of the scope of this paper and leave it as a promising endeavour for future research.
Nevertheless, a cursory comparison of the parameter estimates from the HANK model with those of Smets
and Wouters (2007) – for a somewhat smaller sample – reveals some surprising differences.28 In HANK, the
inverse elasticity of substitution, σ, is relatively large. This differs to the estimate of SW and the findings
documented in Boehl and Strobel (2022b,a) for US data until 2019, who report values close-to unity. This
estimate is likely to be related to the fact that HANK models feature an additional precautionary savings
channel which originates from the assumption of incomplete financial markets.

An interesting finding is that in the HANK model both the price and the wage Phillips curve are iden-
tified to be relatively steep, which is reflected by Calvo adjustment probabilities ζp and ζw to be estimated
relatively low. This stands in contrast to many more recent estimates which find rather large values for
these parameters, which suggests a very flat Phillips curve. While this effect may come from different data
samples and slightly different specifications of the Phillips curves, it calls for further investigation. The
relatively lower estimate of S ′′ is also documented in BBL and may indicate that capital adjustment costs
play a smaller role in the HANK model, which may be due to the fact that in the HANK model, portfolio
adjustment represent a additional friction that actively influences the capital investment decision. The other
parameters in table 2, which govern the monetary policy rule and the steady state values of the observables,
are well-aligned with the original estimates in SW. These parameters are likely identified independently of

28The estimation of Smets and Wouters (2007) is replicated in Appendix A.

22



Prior Posterior
distribution mean std. mean std. mode

ρz AR coefficient technology shock beta 0.500 0.200 0.957 0.018 0.960
ρr AR coefficient MP shock beta 0.500 0.200 0.619 0.070 0.640
ρg AR coefficient gov. spending shock beta 0.500 0.200 0.993 0.006 0.993
ρw AR coefficient wage MU shock beta 0.500 0.200 0.985 0.006 0.980
ρp AR coefficient price MU shock beta 0.500 0.200 0.911 0.028 0.917
ρi AR coefficient investment shock beta 0.500 0.200 0.837 0.042 0.836
ρβ AR coefficient interest wedge shock beta 0.500 0.200 0.962 0.030 0.991
σz standard dev. technology shock inv.gamma 0.100 0.250 0.415 0.036 0.430
σr standard dev. MP shock inv.gamma 0.100 0.250 0.130 0.020 0.113
σg standard dev. gov. spending shock inv.gamma 0.100 0.250 1.148 0.088 1.105
σw standard dev. wage MU shock inv.gamma 0.100 0.250 2.662 0.732 2.448
σp standard dev. price MU shock inv.gamma 0.100 0.250 0.201 0.047 0.188
σi standard dev. investment shock inv.gamma 0.100 0.250 1.289 0.215 1.350
σβ standard dev. interest wedge shock inv.gamma 0.100 0.250 0.047 0.017 0.029

Table 3: Estimation results for HANK: parameters of exogenous processes

the model’s setup of the household sector.
The estimate of the portfolio adjustment cost parameter χ0 is well below its respective prior mean,

pointing towards a less accentuated role of the households’ portfolio choice problem. Complementary, the
standard deviation of the idiosyncratic labor productivity, σz, is also slightly below to its prior value. Both
of these values correspond to the parameters chosen by Kaplan et al. (2018a) rather than those of Auclert
et al. (2021). While by no means this evidence can be used to evaluate the role of idiosyncratic income risk
or portfolio choice, it also calls for further investigation. Lastly, the estimates of the parameters that govern
the exogenous autoregressive processes are much in line with conventional estimates, where technology,
government spending and investment specific shocks are usually highly autocorrelated.

In Appendix E I repeat the estimation but while letting the households’ state space being represented on
a smaller grid (480 nodes instead to 2625 nodes). This reduction cuts the estimation time about one-third
to 50 hours in total. As the reported estimates suggest, the reduction in the number of approximation nodes
does not have a significant impact on the estimation results. Consequently, it may be possible to obtain
reliable results from using a smaller representation of the households’ state space.
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Figure 5: Impulse response functions to a monetary policy shock (blue) and a shock to TFP (orange). Responses and credible sets
correspond to 1000 simulations drawn from the posterior distribution. The measures are annualized where applicable.

6 Conclusion

This paper develops the differential-independence mixture ensemble (DIME) MCMC sampler. The sam-
pler can be seen as a “Swiss Army knife” that is applicable for posterior sampling and global optimization
problems alike. I show that the method performs well for high-dimensional and multimodal distributions.
The proposal density of DIME is generated endogenously from the state of an ensemble of many chains,
thereby automatically adapting to the shape of the current estimate of the posterior distribution. A separa-
tion of parameter space and proposal space guarantees that proposals respect the bounds of prior distribution,
which results in significantly higher acceptance rates and, consequently, in higher sampling efficiency.

Mixing between local and global proposal leads to very fast burn-in and convergence to the high density
region of the posterior. I show that DIME MCMC is easy to parallelize, where the number of iterations
required for convergence decreases almost one-to-one with the number of chains. This makes the method
feasible for large-scale problems with models that are computationally expensive to simulate.

The DIME sampler allows, for the first time, to include the households’ micro parameters when estimat-
ing a HANK model with portfolio choice. These parameters, through the households’ decisions, determine
the endogenous distribution of assets. The detailed analysis of the estimated model, e.g. by putting the
resulting parameter estimates in relation to estimates from micro data, is a promising endeavour for future
research.

A natural extension to DIME, also for future research, is to replace the differential-evolution proposal in
the local transition kernel by a HMC proposal for applications in which automatic differentiation is feasible.
In such setting, HMC supersedes differential evolution MCMC: if the Jacobian can be evaluated at low
computational costs, proposals can readily be well-adopted to the actual shape of the posterior. Yet, the
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mixture with the global transition kernel would remain powerful as it can speed up burn-in and enables
sampling from very challenging multimodal distributions.

References
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Appendix A Posterior distribution of the estimation of the Smets-Wouters model

Prior Proposal Posterior
SW DIME MCMC

distribution mean std./df mean sd. mean mean sd. mode

σc normal 1.500 0.375 1.357 0.132 1.38 1.354 0.134 1.434
σl normal 2.000 0.750 1.965 0.579 1.81 1.947 0.570 1.871
βtpr gamma 0.250 0.100 0.140 0.063 0.16 0.140 0.054 0.132
h beta 0.700 0.100 0.699 0.051 0.71 0.700 0.053 0.702
S ′′ normal 4.000 1.500 5.443 1.098 5.74 5.462 1.112 6.835
ιp beta 0.500 0.150 0.252 0.103 0.25 0.246 0.103 0.187
ιw beta 0.500 0.150 0.571 0.135 0.58 0.574 0.136 0.528
α normal 0.300 0.050 0.183 0.018 0.19 0.182 0.018 0.195
ζp beta 0.500 0.100 0.664 0.063 0.66 0.658 0.066 0.609
ζw beta 0.500 0.100 0.728 0.071 0.70 0.726 0.068 0.705
Φp normal 1.250 0.125 1.579 0.078 1.60 1.578 0.079 1.544
ψ beta 0.500 0.150 0.542 0.121 0.54 0.547 0.122 0.487
ϕπ normal 1.500 0.250 2.053 0.178 2.04 2.052 0.175 2.068
ϕy normal 0.125 0.050 0.095 0.023 0.08 0.094 0.023 0.106
ϕdy normal 0.125 0.050 0.231 0.028 0.22 0.230 0.028 0.201
ρ beta 0.750 0.100 0.817 0.026 0.81 0.817 0.026 0.810

ρr beta 0.500 0.200 0.113 0.079 0.15 0.112 0.061 0.104
ρg beta 0.500 0.200 0.982 0.011 0.97 0.983 0.008 0.980
ρz beta 0.500 0.200 0.963 0.013 0.95 0.964 0.011 0.968
ρu beta 0.500 0.200 0.264 0.140 0.95 0.259 0.146 0.231
ρp beta 0.500 0.200 0.900 0.070 0.89 0.903 0.072 0.946
ρw beta 0.500 0.200 0.976 0.017 0.96 0.975 0.033 0.989
ρi beta 0.500 0.200 0.728 0.063 0.71 0.727 0.059 0.670
µp beta 0.500 0.200 0.767 0.171 0.69 0.742 0.134 0.664
µw beta 0.500 0.200 0.881 0.061 0.84 0.880 0.066 0.923
ρgz normal 0.500 0.250 0.503 0.092 0.52 0.502 0.090 0.515
σg inv.gamma 0.100 2.000 0.532 0.030 0.53 0.532 0.030 0.531
σu inv.gamma 0.100 2.000 1.833 0.615 0.23 1.828 0.486 1.871
σz inv.gamma 0.100 2.000 0.460 0.028 0.45 0.460 0.029 0.459
σr inv.gamma 0.100 2.000 0.243 0.015 0.24 0.243 0.015 0.233
σp inv.gamma 0.100 2.000 0.151 0.027 0.14 0.149 0.032 0.120
σw inv.gamma 0.100 2.000 0.249 0.023 0.24 0.249 0.023 0.276
σi inv.gamma 0.100 2.000 0.448 0.048 0.45 0.448 0.048 0.493

γ normal 0.400 0.100 0.419 0.020 0.43 0.419 0.020 0.428
l normal 0.000 2.000 0.938 1.168 0.53 0.971 1.196 0.906
π gamma 0.625 0.100 0.673 0.104 0.78 0.670 0.102 0.730

Table A.4: Replication and comparison of the estimation of (Smets and Wouters, 2007, SW) using DIME MCMC.
The inverse gamma distribution is parameterized in terms of degrees of freedom as in dynare. The marginals from the
proposal distribution is obtained by sampling from the respective multivariate t-distribution in proposal space and then
applying the bijective transformation. The mean values of the original estimation (column SW) are obtained from the
original paper.
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Appendix B Benchmarking against the number of chains

Table B.5 shows Gelman-Rubin coefficients for different ensemble sizes and numbers of cumulative
function evaluations. Each measure is the average over the mean across parameters and over ten batches.
For each given number of function evaluations n f (the columns), the sample length is split in half and only
the second half is used to calculate the coefficient. E.g., for a given number of function evaluations n f the
sample from iteration n f /nc

2 to iteration n f /nc is used for calculation. The reason is that the Gelman-Rubin
coefficient is sensitive to sample length, i.e. the calculation of th Gelman-Rubin coefficient requires much
longer chains than a typical sample from the posterior. Note that some more recent work has cast doubt on
the reliability of the coefficient to study convergence of MC Markov chains (Flegal et al., 2008).

1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06

nc = 2n 1.111 1.094 1.069 1.052 1.044 1.041 1.041 1.036 1.030 1.026
(0.045) (0.016) (0.006) (0.011) (0.010) (0.015) (0.020) (0.016) (0.012) (0.008)

nc = 4n 1.283 1.247 1.223 1.170 1.146 1.127 1.098 1.088 1.084 1.078
(0.105) (0.083) (0.185) (0.155) (0.168) (0.156) (0.103) (0.098) (0.103) (0.104)

nc = 6n 1.515 1.488 1.355 1.373 1.319 1.288 1.302 1.265 1.227 1.206
(0.191) (0.146) (0.141) (0.289) (0.251) (0.231) (0.291) (0.242) (0.216) (0.216)

nc = 8n 1.676 1.633 1.570 1.486 1.436 1.361 1.294 1.264 1.244 1.227
(0.144) (0.214) (0.307) (0.322) (0.360) (0.299) (0.225) (0.202) (0.194) (0.189)

Table B.5: Gelman-Rubin coefficients over different numbers of function evaluations (per column) and numbers of chains nc per
ensemble. Values are means over the means across parameters over 10 batches. Standard deviations across batches are given in
brackets.
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Online Appendix (for online-publication only)

Appendix C Details on the HANK model

This part of the model is by large adopted from Auclert et al. (2021).

Appendix C.1 Households

The Bellman equation of households is given by

Vt(eit, nit−1, ait−1) = max
cit ,bit ,ait

 c1−σ
it

1 − σ
− φ

n1+ν
t

1 + ν
+ βEtVt+1(eit+1, bit+1, ait)

 (C.1)

such that

cit + ait + bit =
(1 − τt)wtnt∫
P(e jt)e1−Ξ

jt d j
e1−Ξ

it + (1 + ra
t )ait−1 + (1 + rb

t )bit−1 − Φt(ait, ait−1), (C.2)

ait ≥ 0, (C.3)
bit ≥ b̄, (C.4)

where Φt(·) is the portfolio adjustment cost function

Φt(ait, ait−1) =
χ1

χ2

∣∣∣∣∣∣ait − (1 + ra
t )ait−1

(1 + ra
t )ait−1 + χ0

∣∣∣∣∣∣χ2

[(1 + ra
t )ait−1 + χ0], (C.5)

with χ0, χ1 > 0 and χ2 > 1. Individual labor productivity eit is assumed to follow a random walk process
with coefficient ρe and a standard deviation of the innovations of σe

t , which is by itself assumed to follow an
exogenous AR(1) process on an aggregate level. Based on the endogenous grid method of Carroll (2006), the
appendix of Auclert et al. (2021) describes an efficient algorithm to solve the two-asset household problem
with convex adjustment costs.

Appendix C.2 Financial market

No arbitrage at the financial market requires that

1 + Etrt+1 =
1 + it

1 + Etπt+1
=

Et[dt+1 + pt+1]
pt

= 1 + Etra
t+1 = 1 + Etrb

t+1 + ω, (C.6)

with ω the parameter governing the cost for liquidity transformation charged by the financial intermediary.
Ex-post returns are subject to surprise inflation and capital gains

1 + rt =
1 + it−1

1 + πt
= 1 + rb

t + ω (C.7)

and

1 + ra
t = Θp

(
dt + pt

pt−1

)
+ (1 − Θp)(1 + rt), (C.8)

where Θp denotes the share of equity in the illiquid portfolio.
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Appendix C.3 Firms

Firms have a production function

y jt = F(k jt−1, n jt) = Ztkαjt−1n1−α
jt , (C.9)

and aggregate marginal costs are given by

M̂Ct = wt/FN(·), (C.10)

which enter the Phillips curve (21). Zt is the aggregate level of TFP which follows an AR(1) process around
its steady state value. Aggregate investment is given by

It = Kt − (1 − δ)Kt−1 + S
(

It

It−1

)
, (C.11)

with the quadratic capital adjustment cost function S (x) = 1
2S ′′ (x − 1)2 as in the main body, and δ > 0 the

parameter for capital depreciation. Dividends are defined as

dt = Yt − wt − It − ψt. (C.12)

Tobin’s Q and the capital investment decisions follow equations (24) and (25) from the main body.

Appendix C.4 Market clearing

The optimality condition for labor unions is (22) and the monetary policy rule is given by (23). Balanced
budget requires

τtwtNt = rtBg +Gt, (C.13)

and market clearing requires

Yt =

∫
citdi +Gt + It + ψt + ωbitdi, (C.14)

pt + Bg =

∫
ait + bitdi. (C.15)

Appendix C.5 Fixed parameters

The parameters that are not estimated are set as in table C.6.
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Parameter Value Target

β time preference parameter – r∗

χ1 portfolio adj. cost scale – B = 1.04Y
b̄ borrowing constraint 0
ρe autocorrelation of earnings 0.966
ν disutility of labor – N = 1
µp steady state markup – p + Bg = 14Y
µw steady state wage markup 1.1
Z TFP 0.468 Y = 1
α capital share 0.33 K = 10Y
ω steady state liquidity premium 0.1
G steady state government spending 0.2
Bg bond supply 2.8
ne points for Markov chain of e 3
nb points for liquid asset grid 25
na points for illiquid asset grid 35

Table C.6: Parameters fixed for the estimation of HANK.

Appendix D Data

The following measurement equations are used for the HANK estimation:

Real GDP growth = γ + (yt − yt−1),
Real consumption growth = γ + (ct − ct−1),

Real investment growth = γ + (it − it−1),
Real wage growth = γ + (wt − wt−1),

Labor hours = n + nt,

Inflation = π + πt,

Federal funds rate = 100
(

π

βγ−σc
− 1

)
+ rt,

The observables are constructed as follows:

• GDP: ln(GDP/GDPDEF/CNP16OV ma)*100

• CONS: ln((PCEC-PCEDG) / GDPDEF / CNP16OV ma)*100

• INV: ln((GPDI+PCEDG) / GDPDEF / CNP16OV ma)*100

• LAB: ln(13*AWHNONAG * CE16OV / CNP16OV ma)*100

• INFL: ln(GDPDEF)*100

• WAGE: ln(COMPNFB / GDPDEF)*100
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• FFR: FEDFUNDS/4

Due to artificial dynamics in the civilian noninstitutional population series that arise from irregular updating
(Edge et al., 2013), I use a 4-quarter trailing moving average from Boehl et al. (forthcoming), denoted
CNP16OV ma, to calculate per capita variables.

• GDP: GDP - Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally Adjusted Annual
Rate, FRED

• GDPDEF: Gross Domestic Product: Implicit Price Deflator , Index 2012=100, Quarterly, Seasonally
Adjusted , FRED

• CNP16OV: Civilian noninstitutional population, Thousands of Persons, Quarterly, Seasonally Ad-
justed, FRED

• CNP16OV ma: a four-quarter trailing average of CNP16OV

• PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally Adjusted An-
nual Rate, FRED

• PCEDG: Personal Consumption Expenditures: Durable Goods, Billions of Dollars, Quarterly, Sea-
sonally Adjusted Annual Rate, FRED

• GPDI: Gross Private Domestic Investment, Billions of Dollars, Quarterly, Seasonally Adjusted Annual
Rate, FRED

• AWHNONAG: Average Weekly Hours of Production and Nonsupervisory Employees: Total private,
Hours, Quarterly, Seasonally Adjusted, FRED

• CE16OV: Employment Level, Thousands of Persons, Quarterly, Seasonally Adjusted, FRED

• COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100, Quarterly, Season-
ally Adjusted, FRED

• FEDFUNDS: Effective Federal Funds Rate, Percent, FRED

Appendix E Estimation of HANK on a smaller grid

Tables E.7 and E.8 present the estimation results of HANK using a smaller grid than in Section 5. In
particular, the number of grid points for the liquid asset is set to nb = 10 (relative to nb = 25 before) and the
number of grid points for the illiquid asset is na = 16 (compared to 35 before). Finally, the state space of
capital is represented by 4 nodes instead of 25 nodes. This implies a smaller grid of 480 nodes instead of the
2625 nodes before, which reduces the estimation time about 34 hours to 70 hours.
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Prior Large grid Small grid
distribution mean std. mean std. mode mean std. mode

σ normal 1.500 0.375 2.043 0.202 1.850 2.153 0.201 2.035
φ normal 2.000 0.750 1.738 0.562 1.805 1.712 0.518 1.790
ζp beta 0.500 0.100 0.590 0.050 0.592 0.584 0.052 0.608
ζw beta 0.500 0.100 0.416 0.069 0.413 0.422 0.065 0.371
ιp beta 0.500 0.150 0.331 0.129 0.335 0.307 0.127 0.254
ιw beta 0.500 0.150 0.322 0.147 0.303 0.330 0.145 0.252
S ′′ gamma 4.000 2.000 2.279 0.702 1.725 2.079 0.632 2.050
ϕπ gamma 1.500 0.250 2.322 0.219 2.198 2.204 0.213 2.253
ϕy gamma 0.125 0.050 0.222 0.063 0.205 0.228 0.064 0.272
ρ beta 0.750 0.100 0.652 0.052 0.680 0.627 0.055 0.613
ȳ normal 0.400 0.100 0.438 0.026 0.434 0.434 0.025 0.435
n̄ normal 0.000 2.000 -0.047 1.961 1.469 -0.005 1.947 -1.629
π∗ gamma 0.625 0.100 0.596 0.051 0.624 0.594 0.051 0.610
i∗ gamma 1.250 0.100 1.239 0.089 1.259 1.243 0.086 1.218

χ0 gamma 0.250 0.150 0.153 0.118 0.094 0.118 0.121 0.032
Ξ beta 0.200 0.100 0.089 0.059 0.071 0.107 0.069 0.126
σe normal 0.920 0.400 0.860 0.185 1.064 0.664 0.107 0.651

Table E.7: Estimation results for HANK with small grid: model parameters

Prior Large grid Small grid
distribution mean std. mean std. mode mean std. mode

ρz beta 0.500 0.200 0.957 0.018 0.960 0.957 0.016 0.958
ρr beta 0.500 0.200 0.619 0.070 0.640 0.603 0.065 0.629
ρg beta 0.500 0.200 0.993 0.006 0.993 0.991 0.006 0.983
ρw beta 0.500 0.200 0.985 0.006 0.980 0.989 0.004 0.992
ρp beta 0.500 0.200 0.911 0.028 0.917 0.947 0.026 0.959
ρi beta 0.500 0.200 0.837 0.042 0.836 0.788 0.047 0.832
ρβ beta 0.500 0.200 0.962 0.030 0.991 0.941 0.044 0.951
σz inv.gamma 0.100 0.250 0.415 0.036 0.430 0.412 0.036 0.396
σr inv.gamma 0.100 0.250 0.130 0.020 0.113 0.138 0.020 0.141
σg inv.gamma 0.100 0.250 1.148 0.088 1.105 1.139 0.089 1.195
σw inv.gamma 0.100 0.250 2.662 0.732 2.448 2.740 0.751 3.270
σp inv.gamma 0.100 0.250 0.201 0.047 0.188 0.205 0.052 0.173
σi inv.gamma 0.100 0.250 1.289 0.215 1.350 1.183 0.204 1.209
σβ inv.gamma 0.100 0.250 0.047 0.017 0.029 0.060 0.026 0.051

Table E.8: Estimation results for HANK with small grid: parameters of exogenous processes

Appendix F Details on the estimation of HANK
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Figure F.6: Traceplot of the log-likelihood of all chains

35



Figure F.7: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels shows histograms of the
marginal distribution over single parameter values. The dashed line plots the respective prior densty. The right panels displays the trace
of all chains over time, as corresponding to the parameters.
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Figure F.8: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels shows histograms of the
marginal distribution over single parameter values. The dashed line plots the respective prior densty. The right panels displays the trace
of all chains over time, as corresponding to the parameters.
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Figure F.9: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels shows histograms of the
marginal distribution over single parameter values. The dashed line plots the respective prior densty. The right panels displays the trace
of all chains over time, as corresponding to the parameters.
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Figure F.10: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels shows histograms of the
marginal distribution over single parameter values. The dashed line plots the respective prior densty. The right panels displays the trace
of all chains over time, as corresponding to the parameters.
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Figure F.11: Traceplots of the 192 DIME chains for the HANK estimation from Section 5. The left panels shows histograms of the
marginal distribution over single parameter values. The dashed line plots the respective prior densty. The right panels displays the trace
of all chains over time, as corresponding to the parameters.
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