Monetary Financing
Without Inflation


Gregor Boehl
University of Bonn
Job hearing
University of Vienna


Link to slides: https://gregorboehl.com/revealjs/vienna_talk

Motivation

Sargent & Wallace (1981):
  • Persistent fiscal deficits force central banks to monetize debt
  • Central bank looses its independence
  • "Unpleasant Monetarist Arithmetic"


Does this (still) hold?

Motivation

(more data)

This paper

Question:
Can the CB balance sheet can be used to sustainably fund the government?
  • Yes! Independent control over inflation & profits
  • CB profits act like a tax
  • CB does not loose independence


Framework:
IO banking sector with liquidity demand...
...embedded in heterogeneous agents NK model
(to literature)

Mechanism

Households:
consumption/saving based on savings return
$\color{Goldenrod}r\color{white} \: \Rightarrow C \: \Rightarrow \: \pi$
Banks:
borrowing/lending based on liquidity
$(J, \color{springgreen}r^J\color{white}, \psi) \: \Rightarrow (\color{Goldenrod}r\color{white}, \color{Lavender}r^A\color{white})$
Central Bank:
provides liquidity to control inflation
$\text{set }(J, \color{springgreen}r^J\color{white}, \psi)$
remits profits to treasury
$\Pi = (\color{Lavender}r^A\color{white} - \color{springgreen}r^J\color{white})J$

Model:

An IO model of the banking sector

Banking sector: bank $i$'s problem



  • banks hold assets and reserves, backed by deposits:
    $$ \definecolor{sgreen}{RGB}{78, 126, 100} \definecolor{sred}{RGB}{231, 75, 75} \definecolor{sblue}{RGB}{112, 174, 255} A_{i,t} + J_{i,t} = D_{i,t} \color{sgreen} - \Delta D_{i,t} $$
    $$ \color{sred}A_{i,t} \color{white} + J_{i,t} = D_{i,t} \color{sgreen} - \Delta D_{i,t} $$
    $$ \color{sred}A_{i,t} \color{white} + J_{i,t} = D_{i,t} \color{sblue} - \Delta D_{i,t} $$
  • assets are fixed at the beginning of each period
  • deposits subject to random transfers (prob. $\chi$)

Banking sector: bank $i$'s problem

  • deposits subject to random transfers (prob. $\chi$) $$ \color{sred}A_{i,t} \color{white} + J_{i,t} = D_{i,t} \color{sblue} - \Delta D_{i,t} $$
  • reserves $J_i > 0$ must compensate for $\Delta D_i$ $$ \color{sred}A_{i,t} \color{sblue} + J_{i,t} \color{white} = D_{i,t} - \Delta D_{i,t} $$
  • any unit $\Delta D_i > J_i$ incurs a cost $\gamma$ $$ \color{sred}A_{i,t} \color{sblue} + J_{i,t} \color{white} = D_{i,t} - \Delta D_{i,t} $$
  • any unit $\Delta D_i > J_i$ incurs a cost $\gamma$ $$ \color{sred}A_{i,t} \color{sblue} + J_{i,t} \color{white} = D_{i,t} - \Delta D_{i,t} $$
  • any unit $\Delta D_i > J_i$ incurs a cost $\gamma$ $$ \color{sred}A_{i,t} \color{sblue} + J_{i,t} \color{white} = D_{i,t} - \Delta D_{i,t} $$
  • any unit $\Delta D_i > J_i$ incurs a cost $\gamma$ $$ \color{sred}A_{i,t} \color{sblue} + J_{i,t} \color{white} = D_{i,t} - \Delta D_{i,t} $$
  • any unit $\Delta D_i > J_i$ incurs a cost $\gamma$ $$ \color{sred}A_{i,t} \color{sblue} + J_{i,t} \color{white} = D_{i,t} - \Delta D_{i,t} $$
    Aggregation:
  • each bank choses $J_{i}$, $D_{i}$ & $A_{i}$
  • given $r$, $r^J$ & $r^A$ (price takers)
  • symmetric competitive equilibrium

Policy Effectiveness

reserves policy interest policy
MRR* binding high low
MRR* slack low high
*Minimal reserve requirement

(illustration) (maths)

MODEL: General equilibrium

  • Embed banking sector in heterogeneous agents NK model
  • Key features:
    • demand for liquid assets (bank deposits)
    • non-Ricardian behavior
    • distribution of wealth
  • Nonlinear solution (using EP framework)

Results: MRR


Steady states given minimal reserve requirements

Results: MRR


Welfare given minimal reserve requirements

Results: excess reserves


Steady states given the level of reserves

Results: excess reserves


Welfare given the level of reserves

Results: excess reserves


Distribution of welfare for the transition from current state to optimal excess reserves

Results: comparison


Wealth distributions for different policy frameworks

Conclusion

  • Provide a unifying framework for monetary policy pass-through
  • Central bank remains in full control of inflation
  • "Tax" incidence:
    • With MRR: tax on liquid wealth + tax on lending
    • Without MRR: tax on bank profits

Disclaimer

(the end.)

Research agenda

Gregor Boehl
Uni Bonn
Job hearing
University of Vienna

Research:

Methodological foundations


  • HANK on Speed (R&R JET):
    Efficient solution of nonlinear heterogeneous agent models
  • DIME MCMC (R&R JoE):
    Bayesian estimation of complex, computationally demanding GE models

Research: 4 Applications

  • Labor market participation macro
    • effects of labor shortages
    • inflationary effects of minimum wages
    • "social accelerator effect" (business cycle effects of nominal stabilizers)

  • Climate policy macro
    • How to distribute costs of green transition?
    • Which policies affect which housholds?

  • Money & banking macro
  • Structural investigation of fiscal policy
    • Bayesian estimation of HANK
    • Identify effects of spending, transfer & tax shocks

Thank you!

Appendix

Banking sector: Market rates

  • Interest on reserves fixed at 1%
  • MRR not binding: limited pass-through
  • MRR binding: large pass-through
(to table view)

Banking sector: Market rates

  • Keeping reserve volume fixed
  • MRR not binding: large pass-through
  • MRR binding: limited pass-through
(to table view)

Literature (back)

  • DSGE literature: Gertler & Karadi (2011,2013), Carstrom et al. (2013), Boehl et. al. (2024)
  • Banking literature: Corbae & D'Erasmo (2021), Drechsler et al. (2017), Poole (1968)
  • Monetary: Sargent & Wallace (1981), Friedman (1969), Bianchi & Bigio (2022), Piazzesi et al. (2019)

Banking sector (back)

  • banks hold assets and reserves, backed by deposits: $$ A_{i,t} + J_{i,t} = D_{i,t} $$
  • assets are fixed at the beginning of each period
  • deposits subject to random transfers (prob. $\chi$) $$ \Delta {D}_{i,t} \sim \mathcal{N} \left( 0, \frac{{D}_{i,t} D_{-i,t}}{\sum D_{j,t}} (2 \chi - \chi^2)\right). $$
  • any transfered unit of deposits not backed by reserves incurs a cost $\gamma$

Banking sector: bank $i$'s problem (back)

  • Expected cost for each bank: $$ g(J_{i,t}, D_{i,t}) = h(D_{i,t}) f_h\left(J_{i,t}\right) - J_{i,t} \left[1-F_h\left(J_{i,t}\right)\right], $$
  • Banks are subject to a minimal reserve requirement (MRR) $$ \psi D_{i,t} \leq J_{i,t} $$
  • Each bank $i$ maximizes profits s.t. balance sheet, expected costs, MRR & competitors actions

Banking sector: aggregation (back)

FOCs:
$$ \small \definecolor{sgreen}{RGB}{78, 126, 100} \begin{align} R = (1-\psi) R^b + \psi R^j &-\gamma \left( 0.5\hat{f} - \psi \left[1-\hat{F}\right] \right) \\ \color{sgreen} \underbrace{ \color{white} R^j - R^b + \gamma \left[1- \hat{F} \right] }_{MPJ} &= \min\left\{ 0, \; R^j - R^b + \gamma \left[1- \hat{F}_\psi \right] \right\} \end{align} $$
FOCs:
$$ \small \begin{align} R = (1-\psi) R^b + \psi R^j &-\gamma \left( 0.5\hat{f} - \psi \left[1-\hat{F}\right] \right) \\ \underbrace{ R^j - R^b + \gamma \left[1- \hat{F} \right] }_{MPJ} &= \min\left\{ 0, \; R^j - R^b + \gamma \left[1- \hat{F}_\psi \right] \right\} \end{align} $$
FOCs when MRR slack:
$$ \small \begin{align} R = \color{sgreen}(1-\psi)\color{white} R^b \color{sgreen}+ \psi R^j \color{white} &-\gamma \color{sgreen} \left( \color{white} 0.5\hat{f} \color{sgreen} - \psi \left[1-\hat{F}\right] \right) \\ \color{white} \underbrace{ R^j - R^b + \gamma \left[1-\hat{F}\right] }_{MPJ} &= \color{sgreen} \min\left\{ \color{white} 0 \color{sgreen}, \; R^j - R^b + \gamma \left[1-\hat{F}_\psi \right] \right\} \end{align} $$
FOCs at MRR:
$$ \small \begin{align} R = (1-\psi) R^b + \psi R^j &-\gamma \left( 0.5\hat{f} - \psi \left[1-\hat{F}\right] \right) \\ \color{sgreen} \underbrace{ R^j - R^b + \gamma \left[1- \color{white} \hat{F} \color{sgreen} \right]}_{MPJ} &= \color{sgreen} \min\left\{ 0, \; R^j - R^b + \gamma \left[1- \color{white} \hat{F}_\psi \color{sgreen} \right] \right\} \end{align} $$
  • IOR rate $R^j$, deposit rate $R$, lending rate $R^b$
  • $\hat{f} = f\left(\hat{J}| 0, \hat{D}\right)$, $\hat{f}_\psi = f\left(\psi\hat{D}| 0, \hat{D}\right)$, $\hat{F}=...$
  • Reserves & deposits scaled by liquidity risk $\hat{J} = \frac{J}{\nu}$

Banking sector: partial equilibrium - lending (back)

$$ \scriptstyle \begin{align} \text{demand:}& &{d_A}\left(R^b\right) \; &= \;\hat{D}, \qquad \left\{\hat{J}, R^j\right\} \text{ fixed}\\ \text{supply:}& &\gamma \left[1- \hat{F} \right] \; &= \; \min\left\{ R^b - R^j, \; \gamma \left[1- \hat{F}_\psi \right] \right\} \end{align} $$
$$ \scriptstyle \begin{align} \text{demand:}& &{d_A}\left(R^b\right) \; &= \; \hat{D}, \qquad \left\{\hat{J}, R^j\right\} \text{ fixed}\\ \text{supply:}& &\color{sgreen} \gamma \left[1- \color{white} \hat{J} \color{sgreen} \right] \; &= \; \color{sgreen} \min\left\{ R^b - R^j, \; \gamma \left[1- \color{white} \psi \hat{D} \color{sgreen} \right] \right\} \end{align} $$
$$ \scriptstyle \begin{align} \text{demand:}& &{d_A}\left(R^b\right) \; &= \; \hat{D}, \qquad \left\{\hat{J}, R^j\right\} \text{ fixed}\\ \text{supply:}& &\color{white} \gamma \left[1-\hat{F}\right] \; &= \; \color{sgreen}\min\left\{ \color{white} R^b - R^j \color{sgreen}, \; \gamma \left[1-\hat{F}_\psi \right] \right\} \end{align} $$
$$ \scriptstyle \begin{align} \text{demand:}& &{d_A}\left(R^b\right) \; &= \; \hat{D}, \qquad \left\{\hat{J}, R^j\right\} \text{ fixed}\\ \text{supply:}& &\gamma \left[1- \hat{F} \right] \; &= \; \min\left\{ R^b - R^j, \; \gamma \left[1- \hat{F}_\psi \right] \right\} \end{align} $$

partial equilibrium: reserves policy (back)


$$ \scriptsize \begin{align} R &= (1-\psi) R^b + \psi R^j -\gamma \left( 0.5\hat{f} - \psi \left[1-\hat{F}\right] \right) \\ \gamma \left[1- \hat{F} \right] &= \min\left\{ R^b - R^j, \; \gamma \left[1- \hat{F}_\psi \right] \right\} \end{align} $$

partial equilibrium: higher elasticity (back)

$$ \scriptsize \begin{align} R &= (1-\psi) R^b + \psi R^j -\gamma \left( 0.5\hat{f} - \psi \left[1-\hat{F}\right] \right) \\ \gamma \left[1- \hat{F} \right] &= \min\left\{ R^b - R^j, \; \gamma \left[1- \hat{F}_\psi \right] \right\} \end{align} $$

partial equilibrium: IOR policy (back)

$$ \scriptsize \begin{align} R &= (1-\psi) R^b + \psi R^j -\gamma \left( 0.5\hat{f} - \psi \left[1-\hat{F}\right] \right) \\ \gamma \left[1- \hat{F} \right] &= \min\left\{ R^b - R^j, \; \gamma \left[1- \hat{F}_\psi \right] \right\} \end{align} $$

Facts

  • Balance sheets are huge
  • Debate on operational framework
  • CB profits can be significant


(to literature)